Human Genetic Variation: Hardy-Weinberg Equilibrium Worksheet

Hardy-Weinberg Equilibrium with an autosomal recessive allele: ΔCCR5 and HIV resistance example

"Given the impact of this mutation on the current HIV epidemic, we would like to know the frequency of this genotype."

[pause at 12:18]

From Martinson et al¹., the following genotypic categories were quantified:

Genotype	Phenotype	Martinson et al.
CCR5/	Normal HIV infection susceptibility	647
CCR5		
CCR5/	Delay in progression to AIDS after HIV	134
ΔCCR5	infection	
ΔCCR5/	Partial HIV resistance	7
ΔCCR5		
Total		788

1. Given these numbers, calculate the frequency of each genotype.

2. How can we also use the data in the table to calculate the frequency of each allele?

¹ Martinson JJ, Chapman NH, Rees DC, Liu YT, and Clegg JB (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 16(1):100-3.

Students should resume the video at 16:11 if answers match the given values.

[pause at 17:50]

3. Using Hardy-Weinberg equilibrium, calculate the expected frequencies of each genotype from the allelic frequencies.

Equations: Hardy-Weinberg equilibrium

$$p+q = 1$$

 $p^2 + 2pq + q^2 = 1$

p = frequency of allele A

q = frequency of allele a

 p^2 = frequency of genotype AA

q² = frequency of genotype aa

2pq = frequency of genotype Aa

4. Do these frequencies match those ascertained by Martinson et al.?

[Resume play at 22:26 – pause at 23:22]

Hardy-Weinberg Equilibrium with an autosomal dominant allele: Marfan Syndrome example

5. Marfan's syndrome is caused by an autosomal dominant mutation in the fibrillin-1 gene. Given that the incidence of Marfan's syndrome in a particular population is 1 in 100,000 individuals, and that individuals homozygous for this dominant allele are, for all intents and purposes, non-existent in the population, what is the allelic frequency of mutated fibrillin-1 in this population? Does this allele frequency predict the observed absence of individuals with the homozygous genotype in the population?

[Resume play at 25:14 – pause at 25:50]

Hardy-Weinberg Equilibrium with an X-linked recessive allele:

Red-green color blindness example

Protanopia is one type of red-green color blindness inherited in an X-linked recessive fashion. In a certain population, the prevalence of protanopic males is 1 in 100.

6. What is the frequency of protanopic females?

[Resume play 27:08]