Ames Test Analysis – Examples of available DNA Sequences obtained by students H2O = spontaneous revertant (control exposed to water only)

NaN3 = exposure to sodium azide, known mutagen that tends to induce missense

4NOP = known mutagen that tends to induce indels

<u>TA1535</u>

WT: GAT CTC GGT = D L G

His-: GAT CCC GGT = D P G

H2O-3: GAT ACC GGT = D T G

H2O-4: GAT TCC GGT = D S G

NaN3-1: same as WT

<u>TA1538</u>

4NOP-1 -4 bases 9 bases upstream of his- deletion, +2 bases and – the original base from his - , to a net loss of 3 relative to WT, creates 3 new amino acids and loss of 1 amino.

H2O-1: 21 bp deletion compared to WT (20 bp compared to his-) In-frame deletion of 7 amino acids starting 5 amino acids upstream of original hisdeletion.

H20-2: 3 bp deletion compared to WT (2 bp compared to his-) TARQA becomes TAEA, so 1 amino acid deleted and 1 changed.

H2O-4: Add 1 bp earlier in sequence compared to his-5 amino acids different, right before original deletion PRADTARQ ALS becomes PRADTAEALS

H2O-5 3 bp deletion compared to WT (2 bp deletion compared to his-PRADTARQ becomes PRGHRRQ – so loss of 1 amino acid and change of 3.

Bio 260 Genetics E. De Stasio	Ames Test Mini-Manuscript Grading Sheet	
Abstract Succinct description of	f results	/2
Introduction Describes the assay sys	stem and the research goals or hypotheses	/5
Methods Describes the materials	s you tested and how you collected data	/2
Results Reversion Frequency c	calculation, description, quantitative comparisons	/8
Molecular Data: DNA	alignments, affects on protein	/10
Figures/Tables/Legend	ls	/8
Discussion Explains & Interprets r	eversion frequencies, use of controls	/4
Explains mutation type	es in different Salmonella strains; by different mutagens	/6
Writing Organization, mechani	cs, clarity	/5

Acknowledgements