<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, July 29</td>
<td></td>
<td>First Time Attendees Social</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td></td>
<td>6:00 pm – 7:00 pm</td>
<td>Welcome and Opening Remarks</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>7:15 pm – 8:15 pm</td>
<td>Olga Troyanskaya Award Lecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>8:15 pm – 11:00 pm</td>
<td>Opening Mixer</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Wednesday, July 30</td>
<td></td>
<td>Cell Cycle Transitions</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>8:30 am – 10:00 am</td>
<td>Environmental Sensing Networks</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>10:30 am – 11:15 am</td>
<td>Lee Hartwell Lecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>11:15 am – 12:00 noon</td>
<td>Temporal and Spatial Control of Chromatin</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>2:00 pm – 3:30 pm</td>
<td>Special Presentation by Jon Lorsch, Director of the National Institute</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>4:00 pm – 5:30 pm</td>
<td>How to Get Published Presentation</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 1 and Exhibits</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>Thursday, July 31</td>
<td></td>
<td>Traffic and Cellular Architecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>8:30 am – 10:00 am</td>
<td>Trafficking and Cellular Architecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>10:30 am – 12:00 noon</td>
<td>Dissecting Complex Traits</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>1:30 pm – 3:00 pm</td>
<td>Workshops:</td>
<td>Kane Hall Room 120</td>
</tr>
<tr>
<td></td>
<td>3:15 pm – 4:45 pm</td>
<td>Advocacy Presentation</td>
<td>Kane Hall Room 210</td>
</tr>
<tr>
<td></td>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>Kane Hall Room 220</td>
</tr>
<tr>
<td></td>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 2 and Exhibits</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>Friday, August 1</td>
<td></td>
<td>Chromosome Dynamics</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>8:30 am – 10:00 am</td>
<td>Chromosome Dynamics</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>10:30 am – 11:15 am</td>
<td>Aging</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>11:15 am – 12:00 noon</td>
<td>Lifetime Achievement Award</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>2:00 pm – 3:30 pm</td>
<td>Next Generation Genetica</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>4:00 pm – 5:30 pm</td>
<td>Epigenetics and Post-Transcriptional Regulation</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 3 and Exhibits</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>Saturday, August 2</td>
<td></td>
<td>Yeast and Human Disease</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>8:30 am – 10:00 am</td>
<td>Spatial Relationships</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>10:30 am – 12:00 noon</td>
<td>Chromosome Rearrangements and Polyploidy</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>2:00 pm – 3:30 pm</td>
<td>New Technologies</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>4:00 pm – 5:30 pm</td>
<td>CSA Awards</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>5:30 pm – 5:45 pm</td>
<td>Presentation of Edward Novitski Prize to Charlie Boone</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>6:00 pm – 12:00 am</td>
<td>Presentation of Elizabeth W. Jones Award for Excellence in Education</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>9:00 am – 11:00 am</td>
<td>Genomics and Proteomics</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>Sunday, August 3</td>
<td></td>
<td>Genomics and Proteomics</td>
<td>Meany Theater</td>
</tr>
</tbody>
</table>
Conference Organizers
Trisha Davis, Chair
Mike Snyder, Co-chair

Program Committee
Karen Arndt Leonid Kruglyak Dave Toczyski
Sue Biggins Michael Lichten Phong Tran
Orna Cohen-Fix Vicki Lundblad Olga Troyanskaya
Liz Conibear Mike McMurray Toshi Tsukiyama
Maitreya Dunham Yoshi Ohya Fred van Leeuwen
Richard Gardner Steve Oliver Eric Weiss
Tim Hughes

Mobile website: http://y.gsaconf.org
Follow the conference on Twitter: #YEAST14
The Genetics Society of America is pleased to be working with the yeast community to support the Yeast Genetics Meeting.

Founded in 1931, the Genetics Society of America (GSA) is a professional scientific society with more than 5,000 members worldwide working to deepen our understanding of the living world by advancing the field of genetics, from the molecular to the population level. GSA represents the collective interests of the genetics and model organism communities in advocating support for research, educating students and the public about the importance of genetics, and providing a respected and authoritative voice on genetic issues increasingly in the public eye.

GSA promotes research and fosters communication through a number of GSA conferences including regular meetings that focus on cross-cutting areas of genetics and particular model organisms including C. elegans, Chlamydomonas, ciliates, Drosophila, fungi, mice, Xenopus, yeast, and zebrafish.

GSA publishes two peer-edited scholarly journals:

- **GENETICS**, which has published high quality original research across the breadth of the field since 1916, and
- **G3: Genes|Genomes|Genetics**, an open-access journal launched in 2011 to disseminate high quality foundational research in genetics and genomics.

The Society has a deep commitment to fostering the next generation of scholars in the field, through providing career development activities and resources and offering travel grant programs including the GSA Undergraduate Travel Awards and DeLill Nasser Awards for Professional Development in Genetics.

2014 GSA Board of Directors

Vicki Chandler, President • Jasper Rine, Vice-President • Michael Lynch, Immediate Past President • Anne M. Villeneuve, Secretary • Sue Jinks-Robertson, Treasurer • Angelika Amon • Lynn Cooley • Anna Di Rienzo • Sarah C.R. Elgin • Marnie E. Halpern • Lauren M. McIntyre • Mohamed A.F. Noor • Dmitri A. Petrov • John C. Schimenti • Deborah A. Siegele • Brenda J. Andrews, Editor-in-Chief, G3: Genes|Genomes|Genetics • Mark Johnston, Editor-in-Chief, GENETICS

Trainee Advisory Representatives: Andrew Adrian, Krista Dobi, Kathleen Dumas

GSA Staff

Adam P. Fagen, Executive Director • Mary Adams, Accounting/Membership • Raeka Aiyar, Communications & Engagement Manager • William Anderson, Web Designer • Suzy Brown, Senior Meetings Director • Sally Celia, Executive Assistant • Yimang Chen, Director of Information Technology • Tracey DePellegrin Connelly, Executive Editor • Cristy Gelling, Journals Assistant Editor • Ruth Isaacson, Assistant Managing Editor • Anne Marie Mahoney, Senior Meetings Director • Beth Ruedi, Director of Education & Professional Development • Wendy Scott, Editorial Office Assistant • Chuck Windle, Director of Finance & Administration • Hubert Zhang, IT Project Lead • Wujun Zhou, Web Developer
Thank you to our Sponsors!

Gold Sponsors

[Singer Instruments](#)

[UW Medicine](#)

Silver Sponsors

[EMD Millipore](#)

[Fred Hutchinson Cancer Research Center](#)

[Department of Biochemistry](#)

Bronze Sponsors

[mClabs](#)

[Sunrise Science Products](#)

[Formedium](#)

[Zeiss](#)

[Yeast Genetics Society of Japan](#)
Table of Contents

Schedule of Events..4

General Information..6

GSA Education Programs..8

Exhibits ...9

Platform and Workshop Session Listings...10

Poster Session Listings ...19

Author Index ...49

Gene Index ..60

Notes ...65

Company Sponsored Ads...69

University of Washington Map..70

Please note: Abstracts published in this book should not be cited in bibliographies. Material contained herein should be treated as personal communication and should be cited as such only with the consent of the author.
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, July 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 pm - 10:00 pm</td>
<td>Registration</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>11:00 am – 5:00 pm</td>
<td>GSA Trainee Boot Camp</td>
<td>HUB, Room 340</td>
</tr>
<tr>
<td>5:00 pm - 6:30 pm</td>
<td>GSA Education Special Interest Group Mixer/Pedagogy Workshop</td>
<td>HUB, Room 337</td>
</tr>
<tr>
<td>6:00 pm - 7:00 pm</td>
<td>First Time Attendees Social</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>7:00 pm - 7:15 pm</td>
<td>Welcome and Opening Remarks</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Trisha Davis, Meeting Organizer, University of WA, Seattle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adam Fagen, Executive Director, Genetics Society of America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mark Johnston, Editor, GENETICS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brenda Andrews, Editor, G3: Genes, Genome, Genetics</td>
<td></td>
</tr>
<tr>
<td>7:15 pm - 8:15 pm</td>
<td>Ira Herskowitz Award Lecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Olga Troyanskaya, Princeton University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction by Chad Myers</td>
<td></td>
</tr>
<tr>
<td>8:15 pm - 11:00 pm</td>
<td>Opening Mixer</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Wednesday, July 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30 am - 9:00 am</td>
<td>Breakfast</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>7:30 am – 5:30 pm</td>
<td>Registration</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>8:30 am - 10:00 am</td>
<td>Cell Cycle Transitions</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Chair: Mark Rose</td>
<td></td>
</tr>
<tr>
<td>10:30 am - 11:15 am</td>
<td>Environmental Sensing Networks</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Chair: Brenda Andrews</td>
<td></td>
</tr>
<tr>
<td>11:15 am - 12:00 noon</td>
<td>Lee Hartwell Lecture</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>George Church, Harvard University</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction by Mike Snyder</td>
<td></td>
</tr>
<tr>
<td>12:15 pm - 2:00 pm</td>
<td>Lunch</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>2:00 pm - 3:30 pm</td>
<td>Temporal and Spatial Control of Chromatin</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Chair: Toshi Tsukiyama</td>
<td></td>
</tr>
<tr>
<td>4:00 pm - 5:30 pm</td>
<td>Special Presentation by Jon Lorsch, Director of the National Institute of General Medical Sciences, NIH</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>6:00 pm - 7:30 pm</td>
<td>Undergraduate Dinner</td>
<td>HUB Den</td>
</tr>
<tr>
<td>6:00 pm - 7:30 pm</td>
<td>Dinner</td>
<td>HUB, Room 250</td>
</tr>
<tr>
<td>7:30 pm - 11:00 pm</td>
<td>Poster Session 1 and Exhibits</td>
<td>HUB Grand Ballroom</td>
</tr>
<tr>
<td>Thursday, July 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30 am - 9:00 am</td>
<td>Breakfast</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>8:30 am - 10:00 am</td>
<td>** Trafficking and Cellular Architecture**</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Chair: Liz Conibear</td>
<td></td>
</tr>
<tr>
<td>10:30 am - 12:00 noon</td>
<td>Dissecting Complex Traits</td>
<td>Meany Theater</td>
</tr>
<tr>
<td></td>
<td>Chair: Aimee Dudley</td>
<td></td>
</tr>
<tr>
<td>12:30 pm - 2:00 pm</td>
<td>Lunch</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>1:30 pm - 3:00 pm</td>
<td>Workshops</td>
<td>Kane Hall, Room 120</td>
</tr>
<tr>
<td></td>
<td>Beyond Cerevisiae</td>
<td>Kane Hall, Room 220</td>
</tr>
<tr>
<td></td>
<td>Organizer: Judy Berman</td>
<td>Kane Hall, Room 210</td>
</tr>
<tr>
<td></td>
<td>Computational Tools at SGD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Maria Costanzo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plenary and Workshop for Undergraduate Researchers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Beth Ruedi</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Location</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 3:15 pm – 4:45 pm | **Advocacy Presentation**
Organizer: Adam Fagen | Kane Hall Room 210 |
| 6:00 pm - 7:30 pm | Dinner
GSA Career Dinner | HUB Den |
| 7:30 pm – 11:00 pm | **Poster Session 2 and Exhibits** | HUB Grand Ballroom |

Friday, August 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 am - 9:00 am</td>
<td>Breakfast</td>
<td>Lander Hall, Local Point Dining</td>
</tr>
<tr>
<td>8:15 am - 5:30 pm</td>
<td>Registration</td>
<td>Meany Theater Lobby</td>
</tr>
</tbody>
</table>
| 8:30 am - 10:00 am | **Chromosome Dynamics**
Chair: Bonny Brewer | Meany Theater |
| 10:30 am - 11:15 am| **Aging**
Chair: Martha Cyert | Meany Theater |
| 11:15 am - 12:00 noon | **Lifetime Achievement Award**
Jeremy Thorner, University of California, Berkeley
Introduction by Martha Cyert | Meany Theater |
| 12:15 pm - 2:00 pm | Lunch | Lander Hall, Local Point Dining |
| 2:00 pm - 3:30 pm | **Next Generation Genetics**
Chair: Vivien Measday | Meany Theater |
| 4:00 pm - 5:30 pm | **Epigenetics and Post-Transcriptional Regulation**
Chair: Fred Winston | Meany Theater |
| 5:15 pm – 5:30 pm | **Tribute to Fred Sherman**
by Sue Liebman | Meany Theater |
| 6:00 pm - 7:30 pm | Dinner | HUB Den |
| 7:30 pm - 11:00 pm | **Poster Session 3 and Exhibits** | HUB Grand Ballroom |

Saturday, August 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 am - 9:00 am</td>
<td>Breakfast</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>8:15 am - 12:00 noon</td>
<td>Registration</td>
<td>Meany Theater Lobby</td>
</tr>
</tbody>
</table>
| 8:30 am - 10:00 am | **Spatial Relationships**
Chair: Yoshi Ohya | Meany Theater |
| 10:30 am - 12:00 noon | **Chromosome Rearrangements and Polyploidy**
Chair: Audrey Gasch | Meany Theater |
| 2:00 pm - 3:30 pm | **New Technologies**
Chair: Sue Jaspersen | Meany Theater |
| 4:00 pm - 5:30 pm | **Yeast and Human Disease**
Chair: Jasper Rine | Meany Theater |
| 5:30 pm - 5:45 pm | **GSA Awards**
Presentation of Edward Novitski Prize to Charlie Boone
Presentation of Elizabeth W. Jones Award for Excellence in Education to Malcolm Campbell | Meany Theater |
| 6:00 pm - 12:00 am | Banquet,
Winge-Lindegren Address
Anita Hopper, Ohio State University
Introduction by Ben Hall
Conference Party | HUB Grand Ballroom |

Sunday, August 3

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
</table>
| 9:00 am - 11:00 am | **Genomics and Proteomics**
Chair: Corey Nislow | Meany Theater |
General Information

Registration Desk Hours:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>4:00 pm – 10:00 pm</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Wednesday</td>
<td>7:30 am – 5:30 pm</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Thursday</td>
<td>8:00 am – 1:00 pm</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Friday</td>
<td>8:30 am – 5:30 pm</td>
<td>Meany Theater Lobby</td>
</tr>
<tr>
<td>Saturday</td>
<td>8:30 am – 4:00 pm</td>
<td>Meany Theater Lobby</td>
</tr>
</tbody>
</table>

Mobile Web Site
Bookmark the mobile website on your web enabled mobile device: ygsaconf.org

Follow the conference on Twitter: #YEAST14

Platform Presenter Instructions
All platform authors should load their presentations onto the conference computer 45 minutes before the start of their session. A computer technician will be available to assist you in Meany Theater. Speakers should go into the theater, proceed to the front of the room and enter the door on the left to access the stage.

Posters
All posters will be displayed in the Husky Union Building (HUB) Grand Ballroom. Presenters may begin posting their presentations on Wednesday, July 30 at 9:00 am and should be in place by 7:00 pm on Wednesday evening. Authors will present according to the following schedule:

Wednesday, July 30

Poster Session 1

- Authors of even numbered “A” posters will present 7:30 pm – 8:30 pm
- Authors of odd numbered “A” posters will present 8:30 pm – 9:30 pm
- Open Viewing 9:30 pm – 11:00 pm

Thursday, July 31

Poster Session 2

- Authors of even numbered “B” posters will present 7:30 pm – 8:30 pm
- Authors of odd numbered “B” posters will present 8:30 pm – 9:30 pm
- Open Viewing 9:30 pm – 11:00 pm

Friday, August 1

Poster Session 3

- Authors of even numbered “C” posters will present 7:30 pm – 8:30 pm
- Authors of odd numbered “C” posters will present 8:30 pm – 9:30 pm
- Open Viewing – ALL POSTERS REMOVED by 11:15 pm 9:30 pm – 11:00 pm

Posters must be removed from their boards by 11:15 pm on Friday, August 1, to prepare the room for the dinner/party on Saturday night. POSTERS NOT RETRIEVED BY THIS TIME WILL BE DISCARDED. The GSA Administrative Office staff, Univ. of WA staff and the personnel taking down the boards will not be responsible for posters left by the authors.

Poster Legend

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Expression: 274A – 330C</td>
<td>Late Posters: 466 - 471</td>
</tr>
</tbody>
</table>

Photography
Absolutely no photography is allowed in the poster display areas.

Messages and Notices Boards
Boards for messages, employment notices and conferences are located in HUB Grand Ballroom.
General Information

Meals

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td>7:30 am – 9:00 am</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>Lunch</td>
<td>12:15 pm – 2:00 pm</td>
<td>Lander Hall, Local Point</td>
</tr>
<tr>
<td>Dinner</td>
<td>6:00 pm – 7:30 pm</td>
<td>Husky Union Building, Den</td>
</tr>
</tbody>
</table>

Social Events

Tuesday First Time Attendees Social: Members of the Organizing Committee and other leaders in the field want to personally welcome you to the meeting. All first time attendees are invited for a cookies and coffee social in the Meany Hall Lobby at 6:00 pm.

Tuesday Opening Mixer: Catch up with old friends or meet new people at the Opening Mixer. Beer and wine from local microbrews and wineries will be served in addition to soft drinks and light appetizers.

Wednesday, Thursday and Friday evenings: A hosted bar will be open from 8:00 pm until 11:00 pm each evening in the Grand Ballroom. Be sure to stop by and visit the exhibits. Beer and wine from local microbrews and wineries will be served in addition to soft drinks and snacks.

Saturday evening: A banquet and party is planned from 6:00 pm until 12:30 am in the HUB Grand Ballroom. The GSA Poster Awards will be presented. Anita Hopper, University of Ohio, will present the Winge-Lindegren Address. Following the presentation, there will be a DJ and a hosted bar.

Annual Yeast Genetics Meeting Awards and Special Presentations

The following awards and special presentations will be given:

Ira Herskowitz Award: Olga Troyanskaya, Princeton University
Lee Hartwell Lecture: George Church, Harvard University
Lifetime Achievement Award: Jeremy Thorner, University of California, Berkeley
Winge-Lindegren Address: Anita Hopper, Ohio State University

How to Get Published: Process and Tips from the GSA Journals GENETICS and G3

Wednesday, July 30: 6:00 pm – 7:30 pm, HUB, Room 250
Join GENETICS and G3 journal editors as they discuss the ins and outs of publishing. Enjoy an opportunity to ask questions and learn more about publishing your articles. Topics may include: the peer-review process, open access, writing to get published, where and how your work can have the most impact, revisions and editing, ethical issues in publishing, journal data policies, and more. All are invited to attend, but students, postdocs, and newer faculty members may find the event most useful. After going through the buffet line in the Husky Den, participants should proceed to Room 250, with their dinner, for the presentation and to meet with the editors.

Advocacy Presentation

Thursday, July 31, 3:15 pm – 4:45 pm, Kane Hall, Room 210
The GSA Executive Director will discuss the latest policy and legislative news affecting funding for NIH, describe why it is important for scientists to speak out about issues that affect their grants and research, and share tips for engaging in advocacy.
Tuesday, July 31

GSA Trainee Boot Camp (advance registration required)
11:00 am – 5:00 pm, HUB, Room 340
The boot camp, which is only open to graduate students and postdocs, will cover the following areas: finding funding, getting published, navigating academia and beyond traditional academia.

GSA Education Special Interest Group Mixer/Pedagogy Workshop
5:00 pm – 6:30 pm, HUB, Room 337
Faculty with a passion for genetics education are encouraged to attend this event, where they can mix and mingle with other educators. Current members of the Education SIG can catch up on actions taken by GSA with regards to the education initiative, and those who are not yet SIG members can learn about the Education SIG.

Wednesday, July 30

Genetics Conference Experience: 8:30 am – 12:30 pm
The GSA Genetics Conference Experience provides students at local undergraduate institutions without strong research programs with the unique opportunity to observe distinguished career scientists present their current research in a conference setting. The students will receive a background lecture and participate in an interactive discussion before attending part of a plenary session. This program gives students a glimpse into the real world of genetics research and provides them the opportunity to learn about scientific research outside of a textbook, witness the communication of scientific research first-hand, and ideally will foster an interest in furthering their science education. Invitation-only.

Undergraduate Dinner
6:00 pm – 7:00 pm, HUB Den
Undergraduate researchers attending the conference will network on their own forming a peer-group that will help provide lasting support for the remainder of the conference. After going through the buffet line, participants should go to the tables designated “Undergraduate Researchers”.

Thursday, August 2

Plenary and Workshop for Undergraduate Researchers
1:30 pm – 3:00 pm, Kane Hall, Room 210
Undergraduate conference attendees will attend a plenary session with two talks presented at a level appropriate for an undergraduate audience. Participants will then have a chance to talk to a panel of graduate students about applications, interviewing, admission, choosing a lab and quality of life in graduate school.

GSA Career Dinner
6:00 pm – 7:30 pm, HUB, Den
The GSA Career Dinner is an excellent opportunity for undergraduates, graduate students, and postdoctoral fellows to have informal conversations with senior career scientists regarding the unique challenges and rewards of a scientific career. The dinner is organized by topic table. Topics may include: transition to independence, work-family balance, teaching at undergraduate institutions, non-academic careers for scientists, the job search, the postdoc search, etc. After going through the buffet line, participants should look for the topic tables.
Exhibits will be open during the poster sessions in the HUB Grand Ballroom. Registrants are encouraged to visit the exhibits.

Carl Zeiss Microscopy
Thornwood, NY
Website: www.zeiss.com/microscopy
Email: micro@zeiss.com

As the world's only manufacturer of light, X-ray and electron/ion microscopes, ZEISS offers tailor-made microscope systems for 3D imaging in biomedical research, life sciences and healthcare. A well-trained sales force, an extensive support infrastructure and a responsive service team enable customers to use their ZEISS microscopes to their full potential.

EMD Millipore Corporation
Billerica, MA
Website: www.emdmillipore.com
Email: james.fell@merckgroup.com

Formedium
Norkolk, United Kingdom
Website: www.Formedium.com
Email: Julia.grant@formedium.com

Specialist manufacturer of media for Yeast and Pombe systems. Extensive ranges of all Drop- Out Supplements and formulations. Cost effective custom made Yeast media formulations. Guaranteed reliability with outstanding value. For stock items delivery 3 days, custom made media delivery 6 days. Formedium - dedicated to research to optimize your results.

Genetics Society of America
Bethesda, MD
Website: www.genetics-gsa.org
Email: society@genetics-gsa.org

Come explore the resources and opportunities that GSA has to offer including education, career development and policy, meet members of the GSA staff and leadership; and find out about publishing in *GENETICS* and *G3: Genes|Genomes|Genetics*.

M2P Labs
Baesweiler, Germany
Website: www.m2p-labs.com
Email: katz@m2p-labs.com

m2p-labs is a worldwide leading supplier of microbioreactor systems. The company focuses on microreactor systems and automated solutions for screening and bioprocess development. The BioLector® represents the core technology and based on this, m2p-labs also provides enhanced automated microbioreactor systems like the RoboLector®, which offers even more bioprocessing capabilities at the microscale.

SGD
Stanford, CA
Website: www.yeastgenome.org
Email: Costanzo@stanford.edu

The *Saccharomyces* Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast *Saccharomyces cerevisiae*, providing encyclopedic information about the yeast genome and its genes, proteins, and other encoded features. SGD is freely accessible to students, researchers, and educators worldwide.

Singer Instrument Company
Somerset, United Kingdom
Website: www.singerinst.co.uk
Email: yeast@singerinst.co.u

Singer Instruments have been making scientific instruments since 1934 and have brought speed, convenience, automation, reliability, technology and ergonomics to yeast tetrad dissection to over 400 labs in 50 countries. Singers Instruments also make the ROTOR HDA; a small, fast, high-density pinning and arraying robot for yeast, bacteria, and fungi research.

Sunrise Science Products
San Diego, CA
Website: www.sunrisescience.com
Email: lkylin@sunrisescience.com

Sunrise Science Products manufactures hundreds of selective and non-selective yeast media formulations, and custom recipes for any organism are quickly produced. We are also proud to distribute yeast antibodies, products for protein expression in E. coli and unique magnetic devices for efficient isolation of DNA, RNA and proteins.
Welcome and Opening Remarks

Trisha Davis, Meeting Organizer, University of Washington, Seattle
Adam Fagen, Executive Director Genetics Society of America
Mark Johnston, GENETICS Editor and Brenda Andrews, G3: Genes, Genome, Genetics Editor

Ira Herskowitz Award Lecture
Olga Troyanskaya
Princeton University

Introduction by Chad Myers

Cell Cycle Transitions
Chair: Mark Rose

1 - 8:30

2 - 8:45
Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell cycle progression. Sepp D. Kohlwein, Neha Chauhan, Myriam Visram.

3 - 9:00
Compartmentalization of G1/S regulators allows signaling information to traverse a switch-like transition. Andreas Doncic, Jan M. Skotheim.

4 - 9:15
Coordination of cell cycle-regulated gene expression by Cdk1. Benjamin Landry, Claudine Mapa, Heather Arsenault, Kristin Poti, Jennifer Benanti.

5 - 9:30
Understanding the Regulation, Composition and Function of P bodies and Stress Granules in Quiescent Cells. Khyati H. Shah, Paul K. Herman.

6 - 9:45
Novel pathways of transcription regulation during the transition from growth to quiescence. Shawna Miles, Amali P. Abeysinghe, Linda L. Breeden.
Platform and Workshop Session Listings

Wednesday, July 30 10:30 am–12:00 noon
Meany Theater

Environmental Sensing Networks
Chair: Brenda Andrews

7 - 10:30
The inferred stress-activated signaling network from yeast: coordination, interconnectivity, and a novel NaCl network hub, Cdc14 phosphatase. Yi-Hsuan Ho, Deborah Chasman, Matthew MacGilvray, James Hose, Anna Merrill, Joshua Coon, Mark Craven, Audrey Gasch.

8 - 10:45
An integrated ‘omics approach to large-scale quantitative analysis of cellular metabolic regulation. Sean Hackett, Vito Zanotelli, David Perlman, Joshua Rabinowitz.

9 - 11:00

Lee Hartwell Lecture
George Church
Harvard University

Introduction by Mike Snyder

Wednesday, July 30 2:00 pm–3:30 pm
Meany Theater

Temporal and Spatial Control of Chromatin
Chair: Toshi Tsukiyama

10 - 2:00
Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. Anne Dodson, Ryan Janke, Kathryn Sieverman, Jasper Rine.

11 - 2:15
Dissecting the crosstalk between histone H2B ubiquitination and histone H3 methylation. Hanneke Vlaming, Tibor van Welsem, Erik de Graaf, Maarten Altelaar, David Ontoso, Pedro San-Segundo, Fred van Leeuwen.

12 - 2:30
Identification of a nucleosome patch required for conserved histone modifications. Christine Cucinotta, Alexandria Young, Karen Arndt.

13 - 2:45
Mitochondrial feedback control through global H3K4 demethylation. Maria Soloveychik, Mengshu Xu, Ashruti Narula, Adam Rosebrock, Amy Caudy, Marc Meneghini.

14 - 3:00
Role of ATP-dependent chromatin remodeling enzyme Fun30 in co-transcriptional pre-mRNA splicing. Qiankun Niu, Wei Wang, Boseon Byeon, Yong Li, Asim Bikas Das, Wei-Hua Wu.

15 - 3:15
Platform and Workshop Session Listings

Wednesday, July 30 4:00 pm–5:30 pm
Meany Theater

Special Presentation by Jon Lorsch, Director of the National Institute of General Medical Sciences, NIH

Thursday, July 31 8:30 am–10:00 am
Meany Theater

Trafficicking and Cellular Architecture
Chair: Liz Conibear

16 - 8:30
The budding yeast polo kinase, Cdc5, is a regulator of nuclear morphology. Alison D. Walters, Christopher K. May, Emma Dauster, Bertrand P. Cinquin, Elizabeth A. Smith, Carolyn A. Larabell, Orna Cohen-Fix

17 - 8:45
Surveying the Inner Nuclear Membrane Landscape. Christine J. Smoyer, Jennifer Gardner, Sreenivasulu Santharam Katta, Brian Slaughter, Jay Unruh, Dan Bradford, Scott McCroskey, Sue Jaspersen.

18 - 9:00
SNAREs and the Dsl1 tethering complex mediate an alternative, Sey1p-independent ER fusion pathway. Jason V. Rogers, Conor McMahon, Anastasia Baryshnikova, Michael Costanzo, Charles M. Boone, Frederick M. Hughson, Mark D. Rose.

19 - 9:15

20 - 9:30
Elucidating the architecture and function of the yeast exocyst complex. Mary Munson, Margaret Heider, Caroline Duffy, Zhanna Hakhverdyan, Raghav Kalia, Nicholas Farrall, Michael Rout, Adam Frost.

21 - 9:45
The molecular architecture of the Target Of Rapamycin Complex 2 reveals why it is insensitive to rapamycin. C. Gaubitz, T. Maia de Oliveira, Manoël Prouteau, A. Leitner, M. Karuppasamy, D. Rispal, S. Eltschinger, G. Robinson, G. Konstantinidou, S. Thore, R. Aebersold, R. Loewith, C. Schaffitzel

Thursday, July 31 10:30 am–12:00 noon
Meany Theater

Dissecting Complex Traits
Chair: Aimee Dudley

22 - 10:30
Higher-order epistasis between a mutation and four or more segregating variants generates a 'new' phenotype in a cross. Matthew Taylor, Ian Ehrereich.

23 - 10:45
A quantitative study of whether the HSP90 chaperone modulates robustness to new mutations, recombination, and standing variation in yeast. Kerry A. Geiler-Samerotte, Mark L. Siegal.

24 - 11:00
Diversity across the Saccharomyces genus and the genomic tools to tap it. Chris Todd Hittinger, William G. Alexander, Drew T. Doering, David Peris, Kayla Sylvester, Diego Libkind, Paula Gonçalves, José Paulo Sampaio.

25 - 11:15
High-throughput functional screening of driver mutations. Celia Payen, Anna Sunshine, Giang Ong, Wei Zhao, Maitreya Dunham.

26 - 11:30

27 - 11:45
Analysis of transcription activation distance as a polygenic trait in Saccharomyces cerevisiae. Caitlin Reavey. Mark Hickman, David Botstein, Fred Winston.
Thursday, July 31 1:30 pm–3:00 pm
Kane Hall, Room 120

Beyond Cerevisiae
Chair: Judy Berman

Saccharomyces cerevisiae is arguably the most powerful eukaryotic model system for molecular genetics and genomics. The increased accessibility of technologies such as whole genome sequencing has made analysis of closely related and more distantly related species much more feasible. In this workshop, speakers will introduce the organism or organisms they are studying and the reasons for studying them. They will then provide insights into the types of studies they are performing, and highlight the results they are obtaining, to better understand these organisms. We will start with a focus on comparisons between the species and then highlight more distantly related organisms including important human pathogens.

1:30
Comparative Genomics of Yeast Genome Conformation and Functional Annotation by Multiplexed Hi-C
Ivan Liachko, Joshua Burton, Jay Shendure, Maitreya Dunham, Genome Sciences

1:45
Investigating reticulate evolution in the *Saccharomyces* genus and repeating it for the bioethanol industry.
David Peris Navarro, Kayla Sylvester, Maria Sardi, William Alexander, Diego Libkind, Paula Gonçalves, José Sampaio, Lucas Parreiras, Trey Sato, Chris Hittinger.

2:00
Evolutionary genomics of ecological speciation in *Saccharomyces paradoxus*. Jean-Baptiste Leducq, Lou Nielly-Thibaut, Guillaume Charron, Christian Landry.

2:15
Genome-wide patterns of genetic variation reveal chromosome-scale heterogeneous evolution in a protoploid yeast. Anne Friedrich, Paul Jung, Cyrielle Reisser, Gilles Fischer, Joseph Schacherer.

2:30
The development of molecular tools facilitates functional comparisons between *Saccharomyces cerevisiae* and the related pathogenic yeast *Candida glabrata*.
Lauren Ames, Hsueh-lui Ho, Jane Usher and Ken Haynes.

2:45
A Tetraploid Intermediate Precedes Aneuploid Formation in Yeasts Exposed to Fluconazole. Benjamin Harrison, Maayan Bibi, Rebecca Pulver, Melanie Wellington, Jordan Hashemi, Guillermo Sapiro, Judith Berman.

Thursday, July 31 1:30 pm–3:00 pm
Kane Hall, Room 220

Computational Tools at SGD
Chair: Maria Costanzo

In the *Saccharomyces* Genome Database workshop, we’ll be talking about ways that you can get more out of SGD. We’ll focus on our incredibly powerful tool, YeastMine, that lets you ask virtually any question about yeast data. We’ll also discuss recent improvements to SGD, and have time for questions.

- S. cerevisiae Strains and Sequences
- The Awesome Power of YeastMine
- New Features Coming Soon to SGD
- Open Q&A

Thursday, July 31 1:30 pm–3:00 pm
Kane Hall, Room 210

Plenary and Workshop for Undergraduate Researchers
Chair: Beth Ruedi

Undergraduate conference attendees will attend a plenary session with two talks presented at a level appropriate for an undergraduate audience. Participants will then have a chance to talk to a panel of graduate students about applications, interviewing, admission, choosing a lab and quality of life in graduate school.

Thursday, July 31 3:15 pm–4:45 pm
Kane Hall, Room 220

Advocacy Presentation
Chair: Adam Fagen

We will discuss the latest policy and legislative news affecting funding for NIH, describe why it is important for scientists to speak out about issues that affect their grants and research, and share tips for engaging in advocacy.
<table>
<thead>
<tr>
<th>Listing</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 - 8:30</td>
<td>Mapping Recombination in Single Meiotic Cells Reveals that Tel1/ATM Controls the Positioning and Fate of DNA Double-Strand Breaks. Carol Anderson, Ashwini Oke, Phoebe Yam, Jennifer Fung.</td>
</tr>
<tr>
<td>29 - 8:45</td>
<td>RAD51 and the DNA damage checkpoint are essential for increased chromosome mobility after DNA damage in diploid S. cerevisiae. Michael J. Smith, Fraulin Joseph, Marina Ermakova, Ignacio Izeddin, Vincent Recamier, Xavier Darzacq, Judith Mine-Hattab, Rodney Rothstein.</td>
</tr>
<tr>
<td>30 - 9:00</td>
<td>A combined genetic and biochemical analysis of yeast telomerase. Johnathan W. Lubin, Timothy M. Tucey, Lisa Nguyen, Vicki Lundblad</td>
</tr>
<tr>
<td>31 - 9:15</td>
<td>The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A. Gary M. Deyter, Sue Biggins.</td>
</tr>
<tr>
<td>32 - 9:30</td>
<td>Reconstitution of strong kinetochore attachments requires more than the microtubule binding components of the kinetochore. Emily M. Mazanka, Neil T. Umbreit, Alex Zelter, Daniel R. Gestaut, Charles L. Asbury, Trisha N. Davis.</td>
</tr>
</tbody>
</table>

Friday, August 1 10:30 am–12:00 noon

<table>
<thead>
<tr>
<th>Listing</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 - 10:30</td>
<td>An Asymmetric Competition for Protons Promotes Aging but Facilitates Rejuvenation. Kiersten A. Henderson, Adam L. Hughes, Daniel E. Gottschling. Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.</td>
</tr>
<tr>
<td>36 - 11:00</td>
<td>Translocation of cyclin C to the mitochondria mediates stress-induced fission and programmed cell death. Randy S. Strich, Katrina F. Cooper.</td>
</tr>
</tbody>
</table>

Lifetime Achievement Award

Jeremy Thorner, University of California, Berkeley

Introduction by Martha Cyert
Friday, August 1 2:00 pm–3:30 pm
Meany Theater

Next Generation Genetics
Chair: Vivien Measday

37 - 2:00
Engineering of alcohol and stress tolerance traits in *Saccharomyces cerevisiae* using a novel synthetic biology approach for producing genetic diversity.
Sabrina German, Biranchi N. Patra, Animesh Ray, Helge Zieler.

38 - 2:15

39 - 2:30

40 - 2:45
Global analysis of HAT and HDAC substrates in vivo. David Paul Toczyski, Michael Downey.

41 - 3:00
Protein localization re-patterning during DNA replication stress. Nikko P. Torres, Grant W. Brown.

42 - 3:15
High dimensional phenotyping reveals remarkable extent of haploinsufficiency in essential genes. Shinsuke Ohnuki, Yoshikazu Ohya.

Friday, August 1 4:00 pm–5:30 pm
Meany Theater

Epigenetics and Post-Transcriptional Regulation
Chair: Fred Winston

43 - 4:00
Intrinsically disordered proteins drive heritable epigenetic switches that transform the phenotypic landscape of *S. cerevisiae*. Sohini Chakrabortee, James Byers, Susan Lindquist, Daniel Jarosz.

44 - 4:15
Cheaters Do Prosper: Reciprocal cheating drives epigenetic switching of facultative multicellularity. Sorna Kamara, Randal Halfmann.

45 - 4:30
The PUF Protein Puf3 Toggles the Translational Fate of Bound mRNAs to Regulate Mitochondrial Biogenesis. Chien-Der Lee, Benjamin Tu.

46 - 4:45
Genome-wide screen identifies pathways that govern tRNA splicing and intron turnover in *Saccharomyces cerevisiae*. Jingyan Wu, Yao Wan, Anita Hopper.

47 - 5:00
Heritable variation of mRNA decay rates in yeast. Jennifer M. Andrie, Jon Wakefield, Joshua M. Akey.

Tribute to Fred Sherman

Given by Sue Liebman
Platform and Workshop Session Listings

Saturday, August 2 8:30 am–10:00 am
Meany Theater

Spatial Relationships
Chair: Yoshi Ohya

48 - 8:30
A Stable Quasi-Filamentous Growth Pattern in Budding Yeast. Junwon Kim, Mark D. Rose.

49 - 8:45

50 - 9:00
Spatial control of microtubule length and lifetime by opposing stabilizing and destabilizing functions of Kinesin-8. Yusuke Fukuda, Anna Luchniak, Erin Murphy, Mohan Gupta.

51 - 9:15
Polarization of the Endoplasmic Reticulum by ER-Septin Tethering. Jesse T. Chao, Andrew K. O. Wong, Shabnam Tavassoli, Barry P. Young, Adam Chruscicki, Nancy N. Fang, LeAnn J. Howe, Thibault Mayor, Leonard J. Foster, Christopher J. R. Loewen

52 - 9:30
Coordination between terminal septin subunits: both Cdc11 and Shs1 promote bud neck recruitment of the myosin II-binding factor Bni5. Gregory C. Finnigan, Julie Tagaki, Christina Cho, Elizabeth Booth, Jeremy Thorner.

53 - 9:45
A cytosolic chaperone network mediates quality control of higher-order septin assembly. C. Johnson, A. Weems, J. Brewer, J. Thorner, M. McMurray.

Saturday, August 2 10:30 am–12:00 noon
Meany Theater

Chromosome Rearrangements and Polyploidy
Chair: Audrey Gasch

54 - 10:30

55 - 10:45
The impact of polyploidy on the rate and dynamics of adaptation. Anna M. Selmecki, Yosef E. Maruvka, Philip A. Richmond, Marie Guillet, Noam Shoresh, Amber Sorenson, Subho De, Roy Kishony, Franziska Michor, Robin Dowell, David Pellman.

56 - 11:00
Polyploidy drives population heterogeneity through random and stepwise chromosome loss. Meleah A. Hickman, Carsten Paulson, Judith Berman.

57 - 11:15

58 - 11:30
Sexual conflicts and chromosome rearrangements drive infertility. Sarah E. Zanders, Michael Eickbush, Jonathan Yu, JiWon Kang, Gerry Smith, Harmit Malik.

59 - 11:45
3D structure of yeast synthetic chromosomes. Heloise Muller, Axel Cournac, Romain Koszul.
Saturday, August 2 2:00 pm–3:30 pm
Meany Theater

New Technologies
Chair: Sue Jaspersen

60 - 2:00

61 - 2:15

2:30
Judit Villen, Title unavailable at time of print

63 - 2:45
The use of fluorescence cross-correlation spectroscopy to assay information about protein complexes in yeast. Brian Slaughter, Jay Unruh, Christine Smoyer, Sue Jaspersen.

2:55
ŠTULIPs: tunable, light-controlled interacting protein tags for cell biology. Eric Weiss

3:05
N-terminal
An all-in-one yeast library - creating a new toolbox for studying the proteome. Uri Weill, Ido Yofe, Maya Schuldiner.

3:15
High level of chromosomal mosaicism in supposedly clonal yeast cell populations. Alexandre Gillet-Markowska, Gilles Fischer.

Saturday, August 2 4:00 pm–5:30 pm
Meany Theater

Yeast and Human Disease
Chair: Jasper Rine

64 - 4:00
Quantifying the functional impact of all possible missense variants of BRCA1. Lea Starita, Jacob Kitzman, Justin Gullingsrud, Jeffrey Parvin, Jay Shendure, Stanley Fields.

65 - 4:15
Using DNA Repair Mutants for Cancer Drug Discovery and Identifying Chemoresistance Targets. Irene Ojini, Alison Gammie.

66 - 4:30

67 - 4:45

68 - 5:00
Orphan Diseases: Identifying Genes and NovelTherapeutics to Enhance Treatment (IGNITE). Christopher McMaster.

69 - 5:15
Chromosome instability and synthetic cytotoxicity in yeast and cancer. Philip A. Hieter, Derek van Pel, Hunter Li, Noushin Moshgabadi, Melanie Bailey, Nigel O'Neil.

GSA Awards

Presentation of
Edward Novitski Prize to
Charlie Boone, University of Toronto

Presentation of
Elizabeth W. Jones Award for Excellence in Education to
Malcolm Campbell, Davidson College
Sunday, August 3 9:00 am–11:00 pm
Meany Theater

Genomics and Proteomics
Chair: Corey Nislow

9:00 am
Determination of in vivo RNA kinetics using RATE-seq.
David Gresham

9:15 am
Proteomic approach to predicting regulators of yeast response to 4MCHM. Jennifer Gallagher

9:30 am
Profiling the RNA maturation landscape in yeast. John Aitchison

9:45 am
Mapping the cellular response to small molecules using chemogenomic fitness signature, Guri Giaver

10:00 am
A Chemical-Genetic Matrix Strategy for Directed Discovery of Small Molecule Synergizers. Mike Tyers

10:15 am
Improving the yeast metabolic model using LOPIT proteomic data. Stephen Oliver

10:30 am
Extensive diversity in the transcriptional output from the yeast genome. Lars Steinmetz
Cell Biology: Cell cycle/Growth control/Metabolism

70A
Understanding the regulation of motor proteins in cdc15-2 cells recovering from spindle damage. Beryl Augustine, Foong May Yeong. Dept of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

71B

72C
A cell separation checkpoint ensures proper order of late cytokinetic events. Jennifer L. Brace, Matthew Doerfler, Eric L. Weiss. Molecular Biosciences, Northwestern Univ, Evanston, IL.

73A
Respiro-fermentative differentiation in yeast colonies. Michal Cap1, Libuse Vachova2, Zdena Palkova1. 1) Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; 2) Institute of Microbiology of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.

74B

75C
The metabolic response to acetic acid stress in Saccharomyces cerevisiae. Yachen Dong, Zhihua Jiao, Jin Cai, Ruosi Fang, Qihe Chen. Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.

76A

77B
Quantifying Condition-Dependent Intracellular Protein Levels Enables High-Precision Fitness Estimates. Kerry A. Geier-Samerotte, Tatsu Hashimoto, Mike Dion, Bogdan Budnik, Ed Biohl, D. Allan Drummond. 1) Center for Genomics and Systems Biology, New York University, New York, NY; 2) Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; 3) Department of Statistics, Harvard University, Cambridge, MA 02138, USA; 4) FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.

78C

79A

80B
Untargeted metabolomics reveals the rate of secondary mutations causing metabolic phenotypes. Julia A. Hanchard, Adam P. Rosebrock, Amy A. Caudy. 1) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.

81C
Functions of genes typical of structured colony morphology. Otakar Hlavacek1, Vratislav Stovicek2, Libuse Vachova1, Zdena Palkova2. 1) Laboratory of Cell Biology, Institute of Microbiology, ASCR, v.v.i., 142 20 Prague 4, Czech Republic; 2) Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44 Prague 2, Czech Republic.

82A

83B
SUN Family Proteins Sun4p, Uth1p and Sim1p are efficiently secreted out of the Saccharomyces cerevisiae cells and regulated differently during development of yeast cultures. Evgeny Kuznetsov1, Helena Kucerova2, Zdena Palkova1, Libuse Vachova2. 1) Department of Genetics and Microbiology, Charles University in Prague, Czech Republic; 2) Institute of Microbiology of the ASCR.
84C The Npr2 complex regulates a metabolic switch that controls TORC1 dependent proliferation during amino acid limited growth. Sunil Laxman, Benjamin Sutter, Lei Shi, Benjamin Tu. Biochemistry, UT Southwestern Medical Center, Dallas, TX.

85A Role for alkaline ceramidase and its products sphingoid bases in the oxidative stress response. Jae Kyo Yi, Ruijuan Xu, EunMi Jeong, Cungui Mao. The Department of Medicine and Cancer Center, Stony Brook University, Stony Brook, NY.

87C Measurement of thiamine vitamers and ethanol/CO2 in C. glabrata. Erin M. Neal, Christine L. Kerwin-Iosue, Dennis Wykoff. Biology Department, Villanova University, Villanova, PA.

88A Identification of regulators of riboneogenesis by high-throughput metabolomic and expression screens. Yoomi Oh1,2, Adam Rosebrock1, Amy Caudy1,2. 1) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; 2) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

89B The fourth function of the cell wall. Hiroki Okada, Shinsuke Ohnuki, Yoshikazu Ohya. Integrated Biosciences, University of Tokyo, Kashiwa, Chiba, Japan.

90C Roles of four putative Cyk3-binding proteins in coordination of cleavage-furrow ingression and abscission during cytokinesis. Masayuki Onishi, Meng Wang, John Pringle. Dept Gen, Stanford Univ, Stanford, CA.

91A Contribution of metabolic adaptation and chronological aging to cell differentiation within yeast colonies. Zdena Palkova1, Libuse Vachova2, Michal Cap1, Marcela Hejlova2. 1) Department of Genetics and Microbiology, Charles University in Prague, 128 44 Prague 2, Czech Republic, zdenap@natur.cuni.cz; 2) Institute of Microbiology of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic.

92B Roles of FMS1 (orf19.4589) and CBP1 (orf19.7323) genes in the de novo beta-alanine synthesis pathway from polyamines in Candida albicans. Ruvini U. Pathirana1, Dhammika H. M. L. P. Navarathna2, Kenneth W. Nickerson1. 1) School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE; 2) Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

93C Revisiting the myth of trehalose in the heat shock response: The Tps1 protein, and not trehalose, protected yeast cells from losing viability at high temperature. M. Petitjean, MA. Teste, JL. Parrou. Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, UMR-CNRS5504 & UMR-INRA 792 & INSA & Université de Toulouse, Toulouse, France.

94A Revisiting the role of TPS1 encoding trehalose 6-P synthase in the regulation of yeast glycolysis. M. Petitjean, A. Vax, MA. Teste, JL. Parrou, JM. François. Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, UMR-CNRS5504, UMR-INRA 792, INSA, Toulouse, France.

95B Specific histone residues mediate RTS1 rescue of gcn5A growth under stress. Emily L. Petty1,2, Shannon M. Tomlinson1, Anne Lafon1, Bryce Mendelsohn1, Kristofer Webb1, Eric J. Bennett1, Lorraine Pillus1,2. 1) Division of Biological Sciences, UCSD, La Jolla, CA; 2) Moores Cancer Center Institute, UCDSD, La Jolla, CA; 3) Institut Curie, Paris; 4) Department of Pediatrics, Division of Medical Genetics, UCSF, San Francisco, CA.

96C Characterization of double budding in wild-type Saccharomyces cerevisiae. Angela L. Piotrowski, Robert M. Seiser. Roosevelt University, Schaumburg, IL.

97A Ubiquitylation may promote the Glc7 activity opposing Ipl1 kinase during mitosis. R. Ravindran1, P. Polk2, L. C. Robinson1, K. Tatchell1. 1) Biochemistry and Molecular Biology, LSUHSC, Shreveport, LA; 2) Research Core Facility, LSUHSC, Shreveport, LA.

98B The efflux pump MlcE from the Penicillium solitum compactin biosynthetic gene cluster increases Saccharomyces cerevisiae resistance to natural statins. Ana Rens, Rasmus John Normand Frandsen. DTU Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.
Poster Session Listings

99C Determining the adaptive landscape of the SUL1 promoter. Matthew S. Rich1, Celia Payen1, Maitreya J. Dunham1, Stanley Fields1,2,3. 1) Department of Genome Sciences, University of Washington, Seattle, WA; 2) Department of Medicine, University of Washington, Seattle, WA; 3) Howard Hughes Medical Institute, University of Washington, Seattle, WA.

99D Physiological role of nitric oxide as a signaling molecule in the regulation of sporulation in Saccharomyces cerevisiae. Kyohei Saiki1, Akira Nishimura, Iwao Ohtsu, Daisuke Watanabe, Hiroshi Takagi. NAIST, Nara, Japan.

100A New insights into glucose sensing by S. cerevisiae. Kobi Simpson-Lavy1, Mark Johnston. Biochemistry and Molecular Genetics, CU-Denver School of Medicine, Aurora, CO, 80045.

100B A minimal glycolytic pathway in Saccharomyces cerevisiae. D. Solis-Escalante1, N. Barrajón Simancas1, N. G. Kuijpers1, J. T. Pronk1,2, JM. Daran1,2, P. Daran-Lapujade1. 1) Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; 2) Platform Green Synthetic Biology, Delft, The Netherlands.

102C Feral strains forming biofilm colonies are derived from domesticated strains under stress conditions. Libuse Vachova1, Zdena Palkova2, Vratislav Stovic2, Marketa Begany1. 1) Institute of Microbiology of the ASCR, v.v.i., 142 20 Prague 4, Czech Republic, vachova@biomed.cas.cz; 2) Department of Genetics and Microbiology, Charles University in Prague, 128 44 Prague 2, Czech Republic.

103A Linker scanning mutagenesis of microtubule nucleating components Spe97 and Spe98. Kimberly Fong1, Jerry Tien1, Celia Payen1, Alex Zelter1, Beth Graczky1, Maitreya Dunham2, Trisha Davis1. 1) Department of Biochemistry, University of Washington, Seattle, WA; 2) Department of Genome Sciences, University of Washington, Seattle, WA.

104A Linker scanning mutagenesis of microtubule nucleating components Spe97 and Spe98. Kimberly Fong1, Jerry Tien1, Celia Payen1, Alex Zelter1, Beth Graczky1, Maitreya Dunham2, Trisha Davis1. 1) Department of Biochemistry, University of Washington, Seattle, WA; 2) Department of Genome Sciences, University of Washington, Seattle, WA.

105A Identification of yeast Greatwall kinase Rim15p as a novel negative regulator for alcoholic fermentation. Daisuke Watanabe1,2, Yan Zhou3, Aiko Hirata3, Yoshikazu Ohya3, Takeshi Akao2, Hitoshi Shimo2, Hiroshi Takagi1. 1) NAIST, Nara, Japan; 2) NRIB, Hiroshima, Japan; 3) University of Tokyo, Kashiwa, Japan.

107A An "oncometabolite" in yeast: 2-hydroxyglutarate accumulates in response to altered mitochondrial and central carbon metabolism. Olga Zaslaver1,2, Adam Rosebrock1, Amy Caudy1,2. 1) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; 2) Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.

Cell Biology: Cytoskeleton

108A Quality Control of Higher-order Septin Assembly: Mapping the Septin Proteostasis Network in vivo. Andrew Weems, Michael McMurray. Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO.

109A Linker scanning mutagenesis of microtubule nucleating components Spe97 and Spe98. Kimberly Fong1, Jerry Tien1, Celia Payen1, Alex Zelter1, Beth Graczky1, Maitreya Dunham2, Trisha Davis1. 1) Department of Biochemistry, University of Washington, Seattle, WA; 2) Department of Genome Sciences, University of Washington, Seattle, WA.

110A Kinetochores require oligomerization of the Dam1 complex to maintain microtubule attachments against tension during biorientation. Neil Umbreit1, Matthew Miller3, Jérôme Cattin-Ortolà1, Jerry Tien1, Charles Asbury1, Trisha Davis1. 1) Department of Biochemistry, University of Washington, Seattle, WA; 2) Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 3) Department of Physiology and Biophysics, University of Washington, WA.

111A Identification of yeast Greatwall kinase Rim15p as a novel negative regulator for alcoholic fermentation. Daisuke Watanabe1,2, Yan Zhou3, Aiko Hirata3, Yoshikazu Ohya3, Takeshi Akao2, Hitoshi Shimo2, Hiroshi Takagi1. 1) NAIST, Nara, Japan; 2) NRIB, Hiroshima, Japan; 3) University of Tokyo, Kashiwa, Japan.

112A Crosslinking analysis identifies hundreds of distance constraints in protein complexes. Alex Zelter1, Michael Hoopman2, Richard Johnson3, Michael MacCoss3, Robert Moritz2, Trisha Davis1. 1) Department of Biochemistry University of Washington, Seattle, WA; 2) Institute for Systems Biology, Seattle, WA; 3) Department of Genome Sciences, University of Washington, Seattle, WA.
Cell Biology: Mating/Sporulation/Meiosis

113B Regulation of the Ndc80 complex during meiosis in budding yeast. Jingxun Chen1, Angelika Amon2, Elcin Unal1. 1) Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA; 2) Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.

114C To What Extent Does Homologous Chromosome Pairing Depend on Recombination-Independent Chromosome Interactions? S. Cheng, A. MacQueen. Wesleyan University, Middletown, CT.

115A Regulation of nuclear shape in response to mating pheromone. Alison Walters, Emma Dauster, Orna Cohen-Fix. NIDDK/NIH, LCMB, Bethesda, MD.

120C Translational regulation determines gene insulation during yeast meiosis. Liang Jin, Rolf Stenzel, Aaron Neiman. Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY.

121A Multiple MAPK cascades regulate the transcription of IME1, the master transcriptional activator of meiosis in Saccharomyces cerevisiae. Yona Kassir1, Smadar Kahana-Edwin1, Michal Stark2. 1) Dept Biol, Technion Inst, Haifa, Israel; 2) Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel 52621.

122B Schizosaccharomyces japonicus provides the second example where chirality of DNA strands causes sister-sister cells developmental asymmetry. Amar J. S. Klar. Gene Reg & Chromosome Biol Lab, NCI-Frederick Cancer Res Fac, Frederick, MD.

123C A mating pathway deficiency as a reproductive barrier between Saccharomyces cerevisiae and Saccharomyces paradoxus. Camille Meslin, Allyson O'Donnell1, Nathan Clark' 1) Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA; 2) Cell Biology, University of Pittsburgh, PA.

125B SPS1 and SPO77 act together to regulate prospore membrane closure during sporulation in S. cerevisiae. Scott Paulissen. Christian Slubowski, Linda Huang. Biology, University of Massachusetts Boston, Boston, MA.

126C Characterizing the function of Kar5p during inner nuclear membrane fusion during yeast mating. Jason V. Rogers. Mark D. Rose. Department of Molecular Biology, Princeton University, Princeton, NJ.

127A Quantification of Meiotic Chromosome Mis segregation Frequency in Natural Isolates of Saccharomyces cerevisiae. Amy Carol Sirr, Gareth Cromie, Aimée Dudley. Pacific Northwest Diabetes Research Inst, Seattle, WA.

128B Kel1p collaborates with Fus2p for yeast cell fusion. Jean Smith, Richard Stein, Mark Rose. Molecular Biology, Princeton University, Princeton, NJ.

129C KAR4 has separable functions in mating and multiple steps of meiosis. Abigail J. Sporer, Mark D. Rose. Molecular Biology, Princeton University, Princeton, NJ.
Poster Session Listings

<table>
<thead>
<tr>
<th>Presentation Number</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>130A</td>
<td>Unprogrammed presentation number</td>
<td>Kelsey Van Dalfsen, Gloria Brar. Molecular and Cell Biology, UC-Berkeley, Berkeley, CA.</td>
<td></td>
</tr>
<tr>
<td>132C</td>
<td>Mitochondrial ribosome function/assembly: Regulation by accessory factors in Saccharomyces cerevisiae.</td>
<td>Kaustuv Datta, Jaswinder Kaur, Dharmendra Pandey. Department of Genetics, University of Delhi South Campus, New Delhi, India.</td>
<td></td>
</tr>
<tr>
<td>133A</td>
<td>PEP3 overexpression protects yeast from acid stress by promoting vacuolar biogenesis.</td>
<td>J. Ding1,2, G. Holzwarth3, S. Bradford3, B. Cooley4, A. Yoshinaga5, J. Patton-Vogt4, H. Abeliovich6, M. Penner7, A. Bakalinsky1,2.</td>
<td>Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA; 2) Department of Food Science & Technology, Oregon State University, Corvallis, OR, USA; 3) Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA; 4) Biological Sciences, Duquesne University, Pittsburgh, PA, USA; 5) Department of Microbiology, Oregon State University, Corvallis, OR, USA; 6) Department of Biochemistry and Food Science, Hebrew University, Rehovot, Israel.</td>
</tr>
<tr>
<td>134B</td>
<td>Ysp1 homologous proteins participate in responses to membrane stress in S. cerevisiae and S. pombe.</td>
<td>Vladimir Sirokin1, Michael James1, Elizabeth Bonarigo6, Gary Franke2, Kelly Hopkins2, Scott Erdman1,2.</td>
<td>1) Dept of Cell and Developmental Biology, SUNY Upstate School of Medicine, Syracuse, NY; 2) Dept Biol, Syracuse Univ, Syracuse, NY.</td>
</tr>
<tr>
<td>135C</td>
<td>Elucidation of the Mitochondrial Protein-Protein Interaction Network.</td>
<td>Matthew G. M. Jessulat1, Hiroyuki Aoki1, Zoran Minic3, James Vlasblom2, Sadhana Phanse1,3, Zhaolei Zhang2, Jodi Nunnari3, Mohan Babu1.</td>
<td>1) Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; 2) Department of Chemistry, University of Toronto, Toronto, Canada; 3) Banting and Best Department of Medical Research, Donnelly Center, University of Toronto, Toronto, Ontario, Canada; 4) Department of Microbiology and Molecular Genetics, University of California Davis, California, USA.</td>
</tr>
<tr>
<td>137B</td>
<td>MTG3, a putative GTPase that regulates mitochondrial ribosome function in Saccharomyces cerevisiae.</td>
<td>Upasana Mehra, Yash Verma, Kaustuv Datta. Department of Genetics, University of Delhi, New Delhi, India.</td>
<td></td>
</tr>
<tr>
<td>138C</td>
<td>A genetic screen for suppressors of the age-associated decline of mitochondrial membrane potential.</td>
<td>NH Thayer1,2, MA Borden3, AL Hughes4, D. Lindstrom3, FS Vizeacoumar4, C. Boone4, DE Gottschling1.</td>
<td>1) Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA; 3) Current Location: Biological Chemistry, University of Utah, Salt Lake City, UT; 4) University of Toronto, Toronto, ON.</td>
</tr>
<tr>
<td>140B</td>
<td>Membrane insertion mechanisms of mitochondrially-encoded proteins by the Oxa1 homolog, Cox18.</td>
<td>Mei-Yi Zheng, Heather L. Fiumera. Dept. of Biological Sciences, Binghamton University, Binghamton, NY.</td>
<td></td>
</tr>
</tbody>
</table>

Cell Biology: Mitochondria/Vacuoles/Peroxisomes

<table>
<thead>
<tr>
<th>Presentation Number</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>132C</td>
<td>Mitochondrial ribosome function/assembly: Regulation by accessory factors in Saccharomyces cerevisiae.</td>
<td>Kaustuv Datta, Jaswinder Kaur, Dharmendra Pandey. Department of Genetics, University of Delhi South Campus, New Delhi, India.</td>
<td></td>
</tr>
<tr>
<td>133A</td>
<td>PEP3 overexpression protects yeast from acid stress by promoting vacuolar biogenesis.</td>
<td>J. Ding1,2, G. Holzwarth3, S. Bradford3, B. Cooley4, A. Yoshinaga5, J. Patton-Vogt4, H. Abeliovich6, M. Penner7, A. Bakalinsky1,2.</td>
<td>Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA; 2) Department of Food Science & Technology, Oregon State University, Corvallis, OR, USA; 3) Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA; 4) Biological Sciences, Duquesne University, Pittsburgh, PA, USA; 5) Department of Microbiology, Oregon State University, Corvallis, OR, USA; 6) Department of Biochemistry and Food Science, Hebrew University, Rehovot, Israel.</td>
</tr>
<tr>
<td>134B</td>
<td>Ysp1 homologous proteins participate in responses to membrane stress in S. cerevisiae and S. pombe.</td>
<td>Vladimir Sirokin1, Michael James1, Elizabeth Bonarigo6, Gary Franke2, Kelly Hopkins2, Scott Erdman1,2.</td>
<td>1) Dept of Cell and Developmental Biology, SUNY Upstate School of Medicine, Syracuse, NY; 2) Dept Biol, Syracuse Univ, Syracuse, NY.</td>
</tr>
<tr>
<td>135C</td>
<td>Elucidation of the Mitochondrial Protein-Protein Interaction Network.</td>
<td>Matthew G. M. Jessulat1, Hiroyuki Aoki1, Zoran Minic3, James Vlasblom2, Sadhana Phanse1,3, Zhaolei Zhang2, Jodi Nunnari3, Mohan Babu1.</td>
<td>1) Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; 2) Department of Chemistry, University of Toronto, Toronto, Canada; 3) Banting and Best Department of Medical Research, Donnelly Center, University of Toronto, Toronto, Ontario, Canada; 4) Department of Microbiology and Molecular Genetics, University of California Davis, California, USA.</td>
</tr>
</tbody>
</table>

Cell Biology: Protein Sorting and Turnover

<table>
<thead>
<tr>
<th>Presentation Number</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>137B</td>
<td>MTG3, a putative GTPase that regulates mitochondrial ribosome function in Saccharomyces cerevisiae.</td>
<td>Upasana Mehra, Yash Verma, Kaustuv Datta. Department of Genetics, University of Delhi, New Delhi, India.</td>
<td></td>
</tr>
<tr>
<td>138C</td>
<td>A genetic screen for suppressors of the age-associated decline of mitochondrial membrane potential.</td>
<td>NH Thayer1,2, MA Borden3, AL Hughes4, D. Lindstrom3, FS Vizeacoumar4, C. Boone4, DE Gottschling1.</td>
<td>1) Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA; 3) Current Location: Biological Chemistry, University of Utah, Salt Lake City, UT; 4) University of Toronto, Toronto, ON.</td>
</tr>
<tr>
<td>140B</td>
<td>Membrane insertion mechanisms of mitochondrially-encoded proteins by the Oxa1 homolog, Cox18.</td>
<td>Mei-Yi Zheng, Heather L. Fiumera. Dept. of Biological Sciences, Binghamton University, Binghamton, NY.</td>
<td></td>
</tr>
</tbody>
</table>

Cell Biology: Protein Sorting and Turnover

<table>
<thead>
<tr>
<th>Presentation Number</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>137B</td>
<td>MTG3, a putative GTPase that regulates mitochondrial ribosome function in Saccharomyces cerevisiae.</td>
<td>Upasana Mehra, Yash Verma, Kaustuv Datta. Department of Genetics, University of Delhi, New Delhi, India.</td>
<td></td>
</tr>
<tr>
<td>138C</td>
<td>A genetic screen for suppressors of the age-associated decline of mitochondrial membrane potential.</td>
<td>NH Thayer1,2, MA Borden3, AL Hughes4, D. Lindstrom3, FS Vizeacoumar4, C. Boone4, DE Gottschling1.</td>
<td>1) Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA; 3) Current Location: Biological Chemistry, University of Utah, Salt Lake City, UT; 4) University of Toronto, Toronto, ON.</td>
</tr>
<tr>
<td>140B</td>
<td>Membrane insertion mechanisms of mitochondrially-encoded proteins by the Oxa1 homolog, Cox18.</td>
<td>Mei-Yi Zheng, Heather L. Fiumera. Dept. of Biological Sciences, Binghamton University, Binghamton, NY.</td>
<td></td>
</tr>
</tbody>
</table>
142A
Stress conditions promote Gap1 permease ubiquitylation and downregulation via the arrestin-like Bul and Aly proteins. M. Crapeau, A. Merhi, B. Andre. IBMM, Free University of Brussels, Gosselies, Belgium.

143B
The protein quality control machinery regulates its misassembled proteasome subunits, and distinguishes them from proteasome storage granules. S. Ben-Aroya, L. Peters, O. Yogev, R. Hazan. Bar-Ilan University, Ramat-Gan, Israel.

144C
Cdc48-Shp1 chaperone promotes structural integrity of protein phosphatase 1 holoenzyme. You-Liang Cheng, Rey-Huei Chen1,2. 1) Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; 2) Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.

145A
The Yeast Biogenesis of Lysosome Related Organelle (BLOC) Complex interacts with ESCRT to regulate endosomal trafficking. Lauren E. Dalton1, Matthew Jessulat2, Viktor Deineko3, Jeffery Tong1, Mohan Babu2, Elizabeth Conibear1. 1) Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; 2) Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada.

146B
Identifying new protein trafficking networks using evolutionary rate covariation (ERC). Zelia A. Ferreira1, Allyson F. O’Donnell1, Nathan L. Clark1. 1) Computational and Systems Biology, University of Pittsburgh, 15260, Pittsburgh, PA; 2) Dept. of Cell Biology, Univ. of Pittsburgh, 15260, Pittsburgh, PA.

147C
Hsp31 is a Stress-response Chaperone that Prevents α-Synuclein Aggregation. Chai-jui Tsai1, Kiran Aslam1, Holli Brendel2, Josephat Asiago1, Kourtney Fultz1, Jean-Christophe Rochet1, Tony Hazbun1. 1) Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN; 2) Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN.

148A
Degeneracy of parameters underlying partitioning of macromolecular content upon yeast cell division. Ali Kinkhabwala1, Anton Khmelinskii1, Michael Knop1. 1) ZMBH, University of Heidelberg, Heidelberg, Germany; 2) Max Planck Institut of molecular Physiology, Dortmund, Germany.

149B
Vps13 plays a role at the early and late endosomes. Kathleen L. Kolehmainen1,2, Elizabeth Conibear1. 1) Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; 2) Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.

150C

151A
Impairment of translocon-associated protein degradation under conditions of endoplasmic reticulum stress. Eric M. Rubenstein1, Mark Hochstrasser2. 1) Department of Biology, Ball State University, Muncie, IN; 2) Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.

152B
Substrate-induced ubiquitylation and endocytosis of Gap1 and Can1 permeases: role of arrestin-like proteins. Elie Saliba1, Kassem Gheddar1, Ahmad Merhi1, Eva-Maria Krammer2, Martine Prévost1, Bruno André1. 1) Molecular Physiology of the Cell, Université Libre de Bruxelles, IBMM, 6041 Gosselies, Belgium; 2) Structure and Function of Biological Membranes, Université Libre de Bruxelles, Campus Plaine, 1050 Brussels, Belgium.

153C

154A
A direct role of HRD3 in ER associated degradation (ERAD). Nidhi Vashista1, Sarah Carroll1, Randolph Hampton1. 1) Cell and Developmental Biology, University of California San Diego, La Jolla, CA; 2) University of Washington, Seattle, WA.

155B
The alternate clathrin adaptor complex subunit Apm2 works with Imalp in a distinct protein transport pathway. Shawn T. Whitfield1,2, Helen E. Burston3, Nandini Raghuram1, Elizabeth Conibear1. 1) Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; 2) Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.
Cell Biology: Signal Transduction

156C
Non-Preferred Carbon Source Utilization Induces Snf1p- and ER Stress-Dependent Activation of the High Osmolarity Glycerol (HOG) Pathway. Hema Adhikari, Paul Cullen. Department of Biological Sciences at SUNY-Buffalo, NY 14260-1300.

157A
ER Stress Stimulates Mucin Receptor Signaling From the Secretory Pathway. Hema Adhikari1, Nadia Vadaie1, Jacky Chow1, Christopher Stefan2, Jason MacGurn2, Paul Cullen1. 1) Department of Biological Sciences at SUNY-Buffalo, 14260-1300; 2) Weill Institute for Cell and Molecular Biology & Department of Molecular Biology and Genetics Cornell University Ithaca NY 14853-7202.

158B
Quantifying the effect of coding sequence variation in human orthologs of Saccharomyces cerevisiae Bim1 on the pheromone response. D. Britain1,2, W. Peria1, G. Pesce1, R. Brent1,2,5. 1) Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Department of Bioengineering, University of Washington, Seattle, WA; 3) Department of Biochemistry, University of Washington, Seattle, WA; 4) The Molecular Sciences Institute, Berkeley, CA; 5) Department of Genome Sciences, University of Washington, Seattle, WA.

159C

160A

161B
The Cdc42-Interacting Protein Bem4 Regulates the Filamentous Growth Pathway. Colin A. Chavel1, Andrew Pitoniak1, Jeremy Smith1, Diawoye Camara1, Jacky Chow1, Sheelaranji Karunanithi1, Ken Wolfe2, Paul Cullen1. 1) University at Buffalo, SUNY, 337 Cooke Hall, North Campus, Buffalo, NY 14260; 2) Smurfit Institute of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland.

162C

163A
Tor1 and PKA downregulation in stationary phase rely on Mtl1 to preserve mitochondrial integrity and cell survival. Venkatraghavan Sundaran1, Mima Petkova1, Nuria Pujol-Carrion1, Jordi Boada2, Maria Angeles de la Torre-Ruiz1. 1) Basic Medical Sciences-IRBLLeida, University of Lleida, LLEIDA, Spain; 2) Experimental Biology-IRBLLeida, University of Lleida, Lleida, Spain.

164B
Calcineurin regulates the yeast synaptojanin Inp53/Sjl3 during membrane stress. Evan Guiney1, Joshua Elias2, Martha Cyert1. 1) Biology, Stanford University, Stanford, CA; 2) Chemical and Systems Biology, Stanford University, Stanford, CA.

165C
TOR Complex 1 is a direct target of amino acid sensor Gcn2. Wenjie Yuan, Yu Jiang. Department of Pharmacology and Chemical Biology, Univ Pittsburgh, Pittsburgh, PA.

166A
Protein-Protein Interactions of the Yak1 Kinase. Adeline Boettcher, Scott Blaszak, Samantha J. DeWerff, Stephen D. Johnston. Department of Biology, North Central College, Naperville, IL.

167B
Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Joanne M. Kingsbury, Neelam D. Sen, Maria E. Cardenas. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC.

168C
Membrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rps5, and Hsf1 in Candida albicans. Michelle Leach1,2, Leah Cowen1. 1) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK.

169A
Regulation of the essential protein kinase Ypk1 by the TORC2 complex. Kristin Leskoske, Françoise Roelants, Jeremy Thorner. Div. of Biochemistry, Biophysics and Structural Biology, Dept. of Molecular and Cell Biology, Univ. of California, Berkeley, CA 94720-3202 USA.
170B

171C
The phosphorylation state of *Saccharomyces cerevisiae* signaling proteins varies in a stress-dependent fashion. Matthew MacGilvray¹, Anna Larson², David Berry³, Josh Coon⁴, Audrey Gasch⁵. 1) Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI; 2) Department of Chemistry, University of Wisconsin-Madison, Madison, WI; 3) Institute for Neurodegenerative Disease, UCSF School of Medicine, San Francisco, CA.

172A
Substrate sequence specificity and catalytic properties of the signaling Ssy5 endoprotease. Antonio Martins, Per Ljungdahl. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.

173B
TORC1 regulates the yeast lipin Pah1 via the Nem1/Spo7 protein phosphatase complex. Emmanuelle Dubots, Stéphanie Cottier, Marie-Pierre Péli-Gulli, Malika Jaquenoud, Sérénine Bontron, Marta Moreno Torres, Roger Schneider, Claudio De Virgilio. Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland.

174C
TORC2-dependent Protein Kinase Ypk1 Phosphorylates Ceramide Synthase Components Lag1 and Lac1 to Stimulate Sphingolipid Synthesis. Alexander Muir, Subramaniam Ramachandran, Françoise Roclants, Garrett Timmons, Jeremy Thorner. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.

175A
Target of rapamycin-responsiveness on the GATA-family transcription activator Gln3. Rajendra Rai¹, Jennifer J. Tate¹, Karthik Shannunganatham², Martha M. Howe³, Terrance G. Cooper¹. 1) Dept. Microbiol., Immunol. and Biochem., Univ. Tennessee, Memphis, TN; 2) Dept. Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN.

176B

177C
Functional characterization of protein interactors of Wsc1p and Mid2p stress sensors and PKC1 signaling in *Saccharomyces cerevisiae*. Ednalise Santiago-Cartagena¹, Vladimir Vélez-Segarra¹, Igor Stagljar¹, Brian C. Rymond³, José R. Rodríguez-Medina¹. 1) Biochemistry, University of Puerto Rico- Medical Sciences Campus, San Juan, PR; 2) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; 3) University of Kentucky, Lexington, KY.

178A

179B
Role of the Glc7-Reg1/2 phosphatase in the control of the Mig1 transcriptional repressor. Sviatlana Shashkova¹, Raul Garcia-Salcedo³, Loubna Bendrioua¹, Timo Lubitz², Niek Welkenhuysen¹, Edda Klipp², Stefan Hohmann¹. 1) Chemistry and Molecular Biology, University of Gothenburg, Sweden; 2) Theoretical Biophysics, Humboldt-Universität zu Berlin, Germany.

180C
Components of the Vid30 complex participates in the transcriptional regulation of glucose-repressed genes in *Saccharomyces cerevisiae*. Angus Ross, Chris Snowdon, Andrew Fletcher, George van der Merwe. Department of Molecular & Cellular Biology, University of Guelph, Guelph, Canada.

181A
Dynamics of MAPK signaling in *Saccharomyces cerevisiae*. Sarah Weisser¹,², Konstanze Bandmann¹,², Julia van der Felden¹,², Peter Lenz¹,², Hans-Ulrich Mösch¹,². 1) Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany; 2) Department of Physics, Philipps-Universität Marburg, Renthof 6, 35032 Marburg, Germany; 3) LOEWE-Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043 Marburg.

182B
Glucose derepression via Snf1-Mig1 is controlled at different levels. Niek Welkenhuysen, Tian Ye, Raul Garcia-Salcedo, Stefan Hohmann. Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.

183C
Dissecting the role of calcineurin and protein kinase C signalling in Hsp90-dependent caspofungin tolerance. Jinglin L. Xie¹, Michelle D. Leach¹,², Leah E. Cowen¹. 1) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences,
University of Aberdeen, Foresterhill, Abderdeen, United Kingdom.

184A
TORC1 and TORC2 regulate Rps6 phosphorylation via Ypk1/2/3 in budding yeast. Seda Yerlikaya¹, Madeleine Meusburger¹, Alexandre Huber², Dorothea Anrather³, Gustav Ammerer², Robbie Loewith¹. 1) Molecular Biology, University of Geneva, Geneva, Switzerland; 2) Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria; 3) Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva 1211, Switzerland.

185B
Mechanisms of nitrogen in regulating cAMP signal in Saccharomyces cerevisiae. Y. Li¹, A. Zhang¹,², H. Jin¹. 1) Hebei University of Technology, No8 Guangrong Road, Hongqiao District, Tianjin, China; 2) Tianjin University, No92 Weijin Road, Nankai District, Tianjin, China.

186C
Characterization of the Recruitment of Casein Kinase 1 to P Bodies. Bo Zhang, Khyati Shah, Qian Shi, Paul Herman. Molecular Genetics, The Ohio State University, Columbus, OH 43210.

Cell Biology: Other

187A
An overexpression suppressor screen to identify genes that are effectors of nuclear morphology in Saccharomyces cerevisiae. James T. Arnone, Orna Cohen-Fix. Laboratory of Cell and Molecular Biology, NIDDK/NIH, Bethesda, MD.

188B
A cell biological screen for age dependent changes in lipid metabolic pathways reveals changes in sphingolipid pathways. Anthony O. Beas, Karen L. Zhao, Daniel E. Gottschling. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.

189C
Molecular switches of Golgi size control. Madhura D. Bhave, Prasanna Iyer, Bhawik Jain, Dibyendu Bhattacharyya. Bhattacharyya lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Sector 22, Navi Mumbai-410 210. MH INDIA.

190A
The osmotolerant yeast *Zygosaccharomyces rouxii* possesses two differently regulated glycerol transporters. Michala Bubnová¹, Hana Sychrová¹, Candida Lucas². 1) Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i, Prague, Czech Republic; 2) Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.

191B
A conserved role for GSK3β in regulating lipid homeostasis through lipins. Leslie J. Chan¹,², Jennifer McQueen¹,³, Timothy R. Peterson²,³, Meredith Briggs¹, David M. Sabatini²,³, Vivien Measday⁴, Christopher J. R. Loewen¹. 1) Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; 2) Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; 3) Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; 4) Howard Hughes Medical Institute; 5) These authors contributed equally to this work.

192C

193A
The JmjC Domain-containing Regulator Gis1 is Regulated by Levels of Heme and Oxygen Independently. Jonathan M. Comer, Ajit Shah, Sneha Lal, Thai Cao, Jagmohan Hooda, Li Zhang. Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX.

194B
Characterization of the CIA complex in maintaining genome stability. Lilach Emuna, Marina Volpe, Galit David Kadoch, Shay Ben A. roya. Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel.

195C

196A
The Role of Phosphorylation in Ribosomal Protein L4. Jesse Michael Fox, Lasse Lindahl. Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD.
197B
Understanding the role of the translation factor eIF5A through genetic interaction network of different mutants. Fabio C. Galvao¹, Sara Sharifpoor², Danuza Rossi¹, PPaulo E. G. Boldrin³, Natalia M. Barboas¹, Brenda J. Andrews², Cleslei F. Zanelli¹, Sandro R. Valentini¹. 1) Biological Science, UNESP-Univ. Estadual Paulista, Araraquara, São Paulo, Brazil; 2) Department of Molecular Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto.

198C
Allele-specific SGA screening to identify functions for ER polarization. Analise K. Hofmann, Andrew K. O. Wong, Christopher J. R. Loewen. 2350 Health Sciences Mall University of British Columbia Vancouver, B. C. Canada V6T 1Z3.

199A
YlSnf1 Affects the Production of Omega-3 Fatty Acids from Yarrowia lipolytica. J. Seip, R. Jackson, H. He, Q. Zhu, S.-P. Hong. Biotechnology, DuPont Central R&D, Wilmington, DE.

200B
PM - ER Membrane Tethering Complexes and Non-vesicular Sterol Transport. Jesper Johansen¹, Evan Quon¹, Yves Sere², Anant K. Menon¹, Christopher T. Beh¹. 1) Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Colombia, Canada; 2) Department of Biochemistry, Weill Cornell Medical College, New York, NY.

201C
Hsp104 as stress indicator in hybrids of the Saccharomyces sensu stricto complex. Claudia Kempf, Jürgen Wendland. Carlsberg Laboratory, Copenhagen, Denmark.

202A
Roles of the Yap1 Transcription Factor and Antioxidants in Saccharomyces cerevisiae’s Tolerance to Furfural and 5-Hydroxymethylfurfural, which Function as Thiol-Reactive Electrophiles Generating Oxidative Stress. Dahee Kim, Ji-Sook Hahn. Chemical and Biological engineering, Seoul National University, Seoul, South Korea.

203B
A metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeast. Eun Jung Kim, Ji Yoon Kim, Jung Hye Roe. School of Biological Sciences, Seoul National University, Seoul, Korea.

204C
Evaluation of cytotoxicity caused by the strong expression of GFPs with various localization signals. R. Kintaka, K. Makanae, H. Moriya. RCIS, Okayama University, City of Okayama, Japan.

205A
Swi3, a novel regulator of aerobic respiration genes and oxygen metabolism in Saccharomyces cerevisiae. Sneha Lal, Jagmohan Hooda, Md Maksudul Alam, Ajit Shah, Thai Cao, Li Zhang. Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX.

206B
Mechanism of Non-Genetic Heterogeneity in Growth Rate of Saccharomyces cerevisiae. Shuang Li, Mark Siegal. Department of Biology, New York University, New York, NY.

207C
Heavy Water Promotes Longevity in Yeast. Xiyan Li, Michael Snyder. Genetics, Stanford University, Stanford, CA.

208A

209B
Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. Yukio Mukai¹, Yuka Kamei¹, Yoshihiro Tamada², Yasumune Nakayama³, Eiichiro Fukusaki³. 1) Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan; 2) Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

210C
Changes in intracellular abundance and localization of Saccharomyces cerevisiae Hsp31p under various environmental stresses suggest its role in neutralizing the effects of oxidative stress insult. Urszula Natkanska¹, Adrianna Skoneczna², Marek Skoneczny¹. 1) Department of Genetics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warszawa, Poland; 2) Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warszawa, Poland.

211A
Cell wall architecture in wine yeast: Compositional and physiological analysis of yeast cell walls having varying impact on wine protein stability. Thulile Ndlovu, Florian F. Bauer. Institute for Wine Biotechnology, Faculty of AgriSciences, South Africa, Western Cape, South Africa.
212B
Elucidating the Effects of Human Genetic Variation On Vitamin D Signaling. Lauren Richardson, Jasper Rine. QB3, University of California, Berkeley, Berkeley, CA.

213C
The stress response pathway is activated in siw14 mutants. Elizabeth Steidle, Daisy Walker, Ronda J. Rolfe. Biology, Georgetown University, Washington, DC.

214A
Inducible and rapid depletion of proteins in S. cerevisiae. Fabian Rudolf, Gintautas Vainorius, Moritz Lang, Joerg Stelling. D-BSSE, ETH Zurich, 4058 Basel, Switzerland.

215B

216C
Selection for strains of Saccharomyces cerevisiae with enhanced Ochratoxin-A detoxification capabilities. Aaron Welch. Chaplin School of Hospitality and Tourism, Florida International University, North Miami, FL.

217A
Identifying biomarkers of extended chronological lifespan through comparative gene expression profiling. Margaret B. Wierman, Mirela Matecic, Veena Valsakumar, Daniel L. Smith, Stefan Bekiranov, Jeffrey S. Smith. Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA.

218B
An ER-Septin Diffusion Barrier Polarizes the Endoplasmic Reticulum. Andrew K. O. Wong1, Jesse T. Chao1, Shahnam Tavassoli1, Barry P. Young1, Adam Chrusciicki2, Nancy N. Fang2,3, LeAnn J. Howe2, Thibault Mayor2,3, Leonard J. Foster2,3, Christopher J. R. Loewen1. 1) Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; 2) Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; 3) Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada.

219C
Structural and functional analysis of Saccharomyces cerevisiae cell surface adhesins. N. Wozniak, H.-U. Mösch. Philippus University Marburg, Department of Genetics, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany.

220A
Chromatin regulation of pericentric non-coding RNA in S. cerevisiae affects chromosome stability. Julia Allison Gallo, Jen Gallagher. Biology, West Virginia University, Morgantown, WV.

221B
Dynamic Regulation of the Cnn1-Ndc80 Kinetochore Interaction During Mitosis. Kriti Shrestha1, Amanda Oldani2, Cinzia Pagliuca2, Peter De Wulf2, Tony Hazbun1. 1) Dept MCMP, Purdue Univ, West Lafayette, IN; 2) European Institute of Oncology, Department of Experimental Oncology, Milan, 20139, Italy.

222C

223A
Regulation of centromeric nucleosome localization by the E3 ubiquitin ligase Psh1. Erica Marie Hildebrand1,2, Sue Biggins1. 1) Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology, University of Washington, Seattle, WA.

224B
Development of an in vitro kinetochore assembly assay to investigate kinetochore function and two alternate assembly pathways. Jackie Lang1,2, Sue Biggins1,2. 1) Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology, University of Washington, Seattle, WA.

225C
Molecular Basis of Deleterious Pericentric Recombination during Meiosis. Mridula Nambiar, Gerald Smith. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.

226A
Mutations in histones H3 and H4 define nucleosome regions essential for chromosome segregation. Payel Chaudhuri, Ines Pinto. Dept Biological Sciences, University of Arkansas, Fayetteville, AR.

Chromosome Dynamics: Chromosome Structure

227B
The stromalin conservative domain in the Sec3 subunit of cohesin mediates the interaction with both Mcd1 and the loading complex. Ola Origil 1, Avi Matityahu 1, Thomas Eng 2, Vincent Guacci 2, Douglas Koshland 2, Itay Onn 1. 1) Faculty of Medicine, Bar-Ilan University, Safed, Israel; 2) Molecular and Cell Biology Dept, University of California, Berkeley, Berkeley, CA USA.

228C
Stability of a Large Amplification in Saccharomyces cerevisiae. Jamie Pogachar, Celia Payen, Maitreya Dunham. Genome Sciences, University of Washington, Seattle, WA.

229A
Chromosome Breakage at Potential Fragile Sites in Retrotransposon Overdose Strains. Cristina M. Lanzilotta 1, Samantha Minikel 1, Nicholas Monteleone 1, Bracha Erlanger 2, Sarah J. Wheelan 2, Lisa Z. Scheifele 1. 1) Department of Biology, Loyola University Maryland, Baltimore, MD; 2) Department of Oncology, Division of Biostatistics and Bioinformatics, Center for Computational Genomics, Johns Hopkins School of Medicine, Baltimore, MD.

230B
Interface between a two-cohesin complex model of cohesion and DNA replication. Kevin Tong, Soumya Rudra, Robert V. Skibbens. Biological Sciences, Lehigh University, Bethlehem, PA.

Chromosome Dynamics: Mutagenesis/Repair

231C
Systematic gene over-expression screen for increased mutation rate in Saccharomyces cerevisiae. Jonathan S. Ang 1, Supipi Duffy 1, Peter C. Stirling 2, Phil Hieter 1. 1) University of British Columbia, Vancouver, Canada; 2) Terry Fox Laboratory, BC Cancer Agency, Vancouver, Canada.

232A

233B
The State of the Rfa2 N-Terminus Affects Rfa1-Protein Interactions that Map Outside of the Rfa1 N-Terminus. Kaitlin M. Dailey, Erica N. Mueller, Gunjan Piya, Stuart J. Haring. Chemistry and Biochemistry, North Dakota State University, Fargo, ND.

234C

235A
Distinct Roles for the Rfa2 N-Terminus in the DNA Damage Response and Adaptation in Saccharomyces cerevisiae. Padmaja L. Ghospurkar 1, Timothy M. Wilson 1, Amber L. Severson 1, Sarah J. Klein 2, Sakina K. Khaku 1, Andre P. Walther 2, Stuart J. Haring 1. 1) Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND; 2) Biological Sciences, Cedar Crest College, Allentown, PA.

236B
The application of glucose starvation as a selective force for the study of adaptive mutations in yeast. Maria Hubmann, Petra Dorninger, Agnes Civegna, Erich Heidenreich. Institute of Cancer Research, Dep. of Medicine I, Medical University of Vienna, Vienna, Austria.

237C
Volatility of mutator phenotypes at single cell resolution. Alan Herr, Scott Kennedy, Eric Schultz, Thomas Chappell, Gary Knowels, Brendan Kohrn. Department of Pathology, University of Washington, Seattle, WA.

238A
An experimental system to investigate large-scale CAG/CTG trinucleotide repeat expansions. Jane C. Kim, Samantha T. Harris, Kartik A. Shah, Sergei M. Mirkin. Biology, Tufts University, Medford, MA.

239B
Stimulation of RNA Polymerase II ubiquitination by yeast RNA 3' processing factors is a conserved DNA damage response in eukaryotes. Jason N. Kuehner 1, Hilary Duffy 1, Claire Moore 2. 1) Department of Biology, Emmanuel College, Boston, MA; 2) Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA.

240C
Two structurally separable functions of Ctp1 in the early steps of DSB repair. L. Ma, M. Nambar, N. Milman, GR. Smith. Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
241A
Cancer-associated exosome mutations cause DNA:RNA hybrids in yeast. K. Milbury1, Y. Chan1, V. Mathew1, P. Hieter2,3, P. Stirling1,4. 1) Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, British Columbia, Canada; 2) Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada; 3) Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; 4) Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.

242B
Numerous extrachromosomal circular DNA elements in Saccharomyces cerevisiae. Henrik D. Møller1, Lance Parsons2, David Botstein2, Birgitte Regenberg1. 1) Department of Biology, University of Copenhagen, Copenhagen, Copenhagen Ø, Denmark; 2) Lewis-Sigler Institute for Integrative Genomics, Princeton University, USA.

243C
The Role of DNM1 in Mitochondrial Genome Stability in Budding Yeast. Christopher T. Prevost, Deanna Pedeville, Rey A. Sia. Dept. of Biology, The College at Brockport-SUNY, Brockport, NY.

244A
Dbf4-dependent kinase regulates both spontaneous and induced mutagenesis by binding to and phosphorylating the Rev7 subunit of DNA polymerase ζ. Robert A. Sclafani1, Luis Brandao1, Rebecca Ferguson1, Irma Santoro3,4, Sue Jinks-Robertson2,4. 1) Dept Biochem, Molec Gen, Univ Colorado Denver, Aurora, CO; 2) Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; 3) Department of Biology, 7300 Reinhardt Circle, Reinhardt University, Waleska, GA; 4) Department of Biology, Emory University, Atlanta, GA.

245B
Structure-function analysis of the yeast ELG1 gene. Keren Shemesh, Martin Kupiec. Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.

246C
The dark side of Swi6; genomic screen for mutants hypersensitive to double strand breaks reveals Swi6 indispensability for genome integrity and maintaining of cellular ploidy. Izabela Brozda1, Paulina Adamus1, Kamil Krol1, Marek Skoneczny2, Adrianna Skoneczna1. 1) Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland; 2) Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.

247A
Genomic screen for mutations conferring zeocin hypersensitivity reveals diverse roles of vesicular trafficking paths in genotoxic stress protection and in genome preservation. Kamil Krol1, Izabela Brozda1, Marek Skoneczny2, Maria Bremer3, Adrianna Skoneczna1. 1) Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland; 2) Department of Genetics, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland; 3) Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.

248B

249C
Localization to the nuclear pore complex is required for stabilizing CAG repeats. Xiaofeng Su1, Vincent Dion1, Susan M. Gasser3, Catherine H. Freudreich1. 1) Biology, Tufts University, Medford, MA, USA; 2) Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; 3) Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.

250A
Interchangeable Parts: Determining Rpa2 N-Terminal and Loop 3-4 Function through the Use of Human/Yeast Rpa2 Hybrid Proteins. Timothy M. Wilson, Kaiithlin M. Dailey, Anna Herauf, Jenna Steffes, Erica N. Mueller, Padmaja L. Ghospurkar, Stuart Haring. Chemistry and Biochemistry, North Dakota State University, Fargo, ND.

Chromosome Dynamics: Recombination

251B
The role of nucleoporins, specifically Nup2, during meiosis in budding yeast. Daniel Chu, Sean Burgess. MCB, UC Davis, Davis, CA.

252C
253A

254B
A potential novel mechanism for DNA double-strand break repair pathway choice. Tatsuya Ii, Hiromi Ando, Melanie Alvarado, Miki Ii. Biological Sciences, University of Alaska Anchorage, Anchorage, AK.

255C

256A
Redefining the M26 hotspot. Walter Steiner, Chelsea Recor, Bethany Zakrzewski. Dept Biol, Niagara Univ, Lewiston, NY.

257B
The Schizosaccharomyces pombe mitochondrial recombination junction-resolving enzyme is functionally homologous to Cce1p of Saccharomyces cerevisiae. Stephan Zweifel, Cody Finke, Kristin Andrykovich, Margaret Alexander, Jean Bower. Department of Biology, Carleton College, Northfield, MN.

Chromosome Dynamics: Telomeres

258C
Ku primarily impacts telomere length in Saccharomyces cerevisiae via Est1 recruitment to the telomere. Laramie Lemon, Jaime Williams, Faissal Ouenzar, Pascal Chartrand, Alison Bertuch. 1) Department of Pediatrics, Baylor College of Medicine, Houston, TX; 2) Department of Biochemistry, Université de Montréal, Quebec, Canada.

259A
Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Amir Aharoni, Lyad Zamir, Inga Sandler, Eitan Rubin. 1) Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel; 2) National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel; 3) Department of Microbiology and Immunology, Ben-Gurion University, Beer-Sheva, Israel; 4) Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

260B
Characterizing the mechanism of variation in genomic uracil content. Debra Sue Bryan, Kerri York, Jay Hesselberth. Biochemistry and Molecular Genetics, Univ Colorado School Medicine, Aurora, CO.

261C

Chromosome Dynamics: Transposition

262A
The human Meier-Gorlin Syndrome mutation in ORC4 reduces replication initiation and rDNA copy number in Saccharomyces cerevisiae. Joseph Carlo Sanchez, M. K. Raghurama, Bonny Brewer. Genome Sciences, University of Washington, Seattle, WA.
266B
A role for the budding yeast separase, Esp1, in Ty1 element transposition. Krystina Ho1,2, Lina Ma1, Stephanie Cheung3, Nancy Fang2, Barry Young4, Christopher Loewen1, Thibault Mayor3, Vivien Measday1,2. 1) Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada; 2) Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; 3) Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; 4) Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

267C
Functional analysis of Ty1 Gag: trans-dominance and nucleic acid chaperone activity. Yuri Nishida1, Katarzyna Pachulska-Wieczorek2, Jessica Mitchell1, Katarzyna J. Purzycka2, David Garfinkel1. 1) Biochemistry & Molecular Biology, University of Georgia, Athens, GA; 2) Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznan, Poland.

268A
Regulation of sexual differentiation in Kluyveromyces lactis by endonuclease activity of the transposase-related gene KAT1. Naghmeh Rajaei1, Jonathan Hildreth, David Garfinkel1. Biochemistry and Molecular Biology, University of Georgia, Athens, GA.

269B
A Trans-dominant form of Ty1 Gag mediates Copy Number Control of the Ty1 Retrotransposon in Saccharomyces. Agniva Saha, Jessica Mitchell, Yuri Nishida, Jonathan Hildreth, David Garfinkel. Biochemistry and Molecular Biology, University of Georgia, Athens, GA.

270C
A Tetraploid Intermediate Precedes Aneuploid Formation in Yeasts Exposed to Fluconazole. Benjamin Harrison1, Maayan Bibi2, Rebecca Pulver2, Melanie Wellington2, Jordan Hashemi3, Guillermo Sapiro3, Judith G. Berman4. 1) Dept Mol Micro & Biotept Mol Micro & Biotechnol, Tel Aviv University, Ramat Aviv, Israel; 2) Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN; 3) Department of Pediatrics, University of Rochester Medical Center, Rochester NY; 4) Department of Electrical and Computer Engineering, Duke University, Durham, NC.

271A
DNA replication and kinetochore mutants exhibit increased DNA:RNA hybrid formation. A. Chan1, P. Hieter1,2. 1) University of British Columbia, Vancouver, BC, Canada; 2) Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.

272B

273C
Evidence that the extra dose of ACT1 causes slow growth in an aneuploid strain disomic for chromosome VI through a dosage imbalance with COF1. Alex Murphy, Keegan Gies, Kun Yang, Emma Kershinik, Kirk Anders. Biology Department, Gonzaga University, Spokane, WA.

Gene Expression: Chromatin

274A
Evolution of chromatin accessibility and gene expression levels during the heat shock response in Saccharomyces sensu stricto yeast. Caitlin Connelly, Joshua Akey. Genome Sciences, University of Washington, Seattle, WA.

275B
A High-Resolution View Of Chromatin Architecture And Transcriptional Repression At Native Telomeres in Saccharomyces cerevisiae. Aisha Ellahi, Deborah Thurtle, Jasper Rine. Dept of Molecular and Cell Biology, Univ California, Berkeley, Berkeley, CA.

276C

277A
Studies addressing a possible role for TORC1 in controlling chromatin structure and transcription elongation in S. cerevisiae. Jasmine Haller1, Mary Allison1, Meet Modi1, James Dornhoffer1, Sarah Marshall1, Taylor McElroy1, Marine Boucherle2, Anne Rufiange2, Malena Outhay1, Jennifer Harper1, Amine Nourani2, Andrea Duina1. 1) Biology Department, Hendrix College,
Poster Session Listings

Conway, AR; 2) Centre de Recherche en Cancérologie de l’Université Laval, L’Hotel-Dieu de Québec, Québec, Canada.

278B
Loss of transcriptional silencing is not an obligate precursor of yeast senescence. Gavin S. Schlissel, Jasper Rine. UC Berkeley, Berkeley, CA.

279C
Keeping Quiet: Does heterochromatin stay silent during homologous recombination? Katie Sieverman1, Jasper Rine1,2. 1) Department of Molecular and Cell Biology, University of California - Berkeley, Berkeley, CA; 2) California Institute for Quantitative Biosciences, University of California - Berkeley, Berkeley CA.

Gene Expression: Epigenetic Mechanisms

280A
Promoting a balanced acetylation state bypasses the requirement for two essential NuA4 subunits in S. cerevisiae. Ana Lilia Torres-Machorro1,2, Naomi E. Frank Searle1,2, Lorraine Pillus1,2. 1) Section of Molecular Biology, Division of Biological Sciences University of California, San Diego, La Jolla, California 92093; 2) UC San Diego Moores Cancer Center, La Jolla, California 92093; 3) Biomedical Science Graduate Program, University of California, San Diego, La Jolla, California 92093.

281B
Ubiquitin-mediated regulation of Snf1/AMPK by Ubp8 and Ubp10 in budding yeast. Hsiang-En Hsu1, Tzu-Ning Liu2, Yi-Chen Lo2, Cheng-Fu Kao1. 1) Institute of Cellular and Organismic Biology, Taipei, Taiwan; 2) Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.

282C
Accumulation of onco-metabolite 2-hydroxyglutarate impacts heterochromatin stability. Ryan Janke, Jasper Rine. Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

283A
Synergistic repression of FLO11 and histone methylation by the Cyclin C/Cdk8 complex and histone demethylase Jhd2p. Michael J. Law, Kerri Ciocciagione. Rowan University-GSBS, Stratford, NJ.

284B
A cre-lox recombination-based assay for the study of yeast chronological aging in nutrient-rich media conditions. David McCleary, Jasper Rine. UC Berkeley, Berkeley, CA.

Gene Expression:

Nucleo/Cytoplasmic Transport

285C
De novo amino acid biosynthesis influences starvation-induced changes in tRNA distribution. Rebecca L. Hurto1,2, Anita K. Hopper1,2. 1) Molecular Genetics, Ohio State Univ, Columbus, OH; 2) The Center for RNA Biology, OSU.

286A
The prion-like domain of the RNA-binding protein Ssd1 regulates the nuclear barcoding of Ssd1 to define its cytoplasmic destiny. Cornelia Kurischko, James R. Broach. Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, PA.

Gene Expression: RNA processing

287B
Ribosome Subunit Biosynthesis Crosstalk During Repression of Ribosomal Protein Synthesis. Brian K. Gregory, Lasse Lindahl. Biological Sciences, UMBC, Baltimore, MD.

288C
Mitochondria outer membrane proteins are required for the proper function and localization of tRNA splicing endonucleases in Saccharomyces cerevisiae. Yao Wan1,2, Jingyan Wu1,2, Anita Hopper1,2. 1) Molecular Genetics, The Ohio State University, Columbus, OH; 2) Center for RNA Biology, The Ohio State University, Columbus, OH.

Gene Expression: RNA turnover

289A
Determination of in vivo RNA kinetics using RATE-seq. David Gresham, Benjamin Neymotin, Rodoniki Athanasiadou. Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.
Poster Session Listings

290B
Global analysis of 5'-hydroxyl RNA surveillance and turnover.
Sally Peach, Kerri York, Jay Hesselberth.
University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Aurora, CO.

291C
Genome-wide study of the interdependence between the cellular growth rate and mRNA turnover.
1) Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Spain; 2) Departamento de Genetica, Universitat de Valencia, Spain; 3) Departamento de Estadistica e Investigacion Operativa, Universitat de Valencia, Spain; 4) Instituto de Ciencias de la Vida y del Vino. Logrono, Spain; 5) Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.

292A
Systematic Identification and Analysis of pre-mRNA Splicing Regulators in *Saccharomyces cerevisiae*. H. Wang, T. Chang, M. Hwang.
1) Academia Sinica, Taipei, Taiwan; 2) Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan.

293B
In search of PP2A/Cdc55 targets involved in stress induced transcription.
Jessica Ferrari, Wolfgang Reiter, David Hollenstein, Gustav Ammerer.
Dept Biochem & Cell Biology, University of Vienna, Vienna, Austria.

294C
Regulation of stress induced gene expression in yeast.
Vasudha Bharatula, Nils Elving, Razvan Chereji, Stephan Bjorklund, Alexandre Morozov, James Broach.
1) Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; 2) Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden; 3) Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA; 4) BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA.

295A
Natural yeast promoter variants harbour different levels of transcriptional-mediated noise.
Jian Liu, Mariñe Vuillemin, Hélène Martin-Yken, Frédéric Bigey, Sylvie Dequin, Jean-Marie François, Jean-Pascal Capp.
1) LISBP, INSA/Univ. of Toulouse, Toulouse, France; 2) INRA, UMR 1083, Montpellier, France.

296B
Role of Chromosomal Looping in the Transcriptional Regulation of Molecular Chaperone Genes in *Saccharomyces cerevisiae*. Surabhi Chowdhary, David Gross.
Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA.

297C
Transciptional Profiling of Budding Yeast Biofilm Suppressors.
Gareth Cromie, Zhihao Tan, Eric Jeffery, Michelle Hays, Cecilia Garmendia, Aimée Dudley.
1) Dudley Group, Pacific Northwest Diabetes Research Inst, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA; 3) Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.

298A
Unanticipated complexity at the *GAT1* locus.
I. Georis, R. Rai, J. J. Tate, T. G. Cooper, E. Dubois.
1) Institut de Recherches Microbiologiques J.-M. Wiame, Brussels, Belgium; 2) Dept. Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.

299B
Selective interaction of RNA-binding proteins with transcript isoforms shapes the post-transcriptional life of mRNA.
Ishaan Gupta, Bernd Klaus, Sandra Cluader-Münster, Aino Jäverlin, Raeka Aiyar, Vicente Pelechano, Lars Steinmetz.
1) European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; 2) European Molecular Biology Laboratory (EMBL), Centre for Statistical Data Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany; 3) Stanford University School of Medicine, Department of Genetics, Stanford, CA 94305, USA; 4) Stanford Genome Technology Center, 855 California Ave, Palo Alto, CA 94305, USA.

300C
1) Dept Molecular Genetics, Ohio State Univ, Columbus, OH; 2) Dept of Chemistry and Biochemistry, Ohio State Univ, Columbus OH.

301A
Controlling isoprenoid production using a microaerobic-responsive switch in yeast.
Hanxiao Jiang, Robert Dahl, Adam Meadows.
Amyris Inc., 5885 Hollis St. Suite 100, Emeryville, CA 94608.

302B
Changes in RNA Polymerase II catalytic activity influence transcription start site utilization on a global scale.
1) Department of
303C
CK2-dependent Regulation of Ifh1 Transcription Factor Involved in the Expression of Ribosomal Protein Genes. Myung Sup Kim, Ji-Sook Hahn. School of Chemical and Biological Engineering, Seoul National University.

304A
Effect of Modulating the Level of the Seventh Largest Subunit of RNA Polymerase II in Schizosaccharomyces pombe. Deepak Kumar, Nimisha Sharma. University School of Biotechnology, G.G.S Indraprastha University, Sec.16C, Dwarka, New Delhi, India-110078.

305B
DNA Replication Checkpoint Regulation of Cell-Cycle Transcription Dynamics. Adam R. Leman1, Kevin A. McGoff2, Xin Guo3, John Harer2, Steven B. Haase2. 1) Biology, Duke University, Durham, NC; 2) Mathematics, Duke University, Durham, NC; 3) Statistical Sciences, Duke University, Durham, NC.

306C
The thiamine signal transduction pathway in Candida glabrata. Sarah Grace Leone, Nicholas Attanasio, Michael Peel, Christine Iosue, Dennis Wykoff. Biology, Villanova University, Villanova, PA.

307A
Transcriptional Regulation of HAP4 by the Mediator Complex and Adenine Levels in Saccharomyces cerevisiae. Chad Bush, Denise Capps, Mengying Chiang, Tammy Pracheil, Zhengchang Liu. Dept. of Biological Sciences, University of New Orleans, 200 Lakeshore Drive, New Orleans, LA 70148.

308B

309C
Phenotypic landscape of the conserved and essential RNA Polymerase II trigger loop: a high-throughput structure-function analysis. Chenxi Qiu, Olivia Erinne, Ping Cui, Kenny Lam, Sarabeesheh Babu, Huiyan Jin, Alvin Tang, Nandhini Mutukrishnan, Craig Kaplan. Biochemistry&Biophysics, Texas A&M University, College Station, TX.

310A
Analysis of ncDNA transcription for roles in regulating gene expression. Elizabeth A. Raupach1, Joseph Martens2. 1) Biological Sciences, University of Pittsburgh, Pittsburgh, PA; 2) Biology, Hamilton College, Clinton, NY.

311B

312C
Functional analysis of stress regulated non-coding RNAs in budding yeast. Amanda N. Scholes, Tara N. Stuecker, Jeffery A. Lewis. Biological Sciences, University of Arkansas, Fayetteville, AR.

313A
FACS-based genetic screen in S. cerevisiae identifies genes involved in the alpha-factor response. Anna Sliva1,2, Zheng Kuang1,2, Jef Boeke1,2. 1) High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 2) New York University Langone Medical Center, New York, NY 10016.

314B
Adaptive evolution of transcription and translation in pathogenic yeast. Xuepeng Sun1,2, Zhe Wang1, Zhenglong Gu1. 1) Division of nutritional sciences, Ithaca, NY; 2) College of Agriculture and Biotechnology.

315C

316A
S. cerevisiae rRNA Synthesis by RNA Polymerase (Pol) II in Response to Nitrogen Deprivation. Arjuna Rao Vallabhaneni, Merita Kabashi, Kushal Bhatt, Heather Conrad-Webb. Biology, Texas Woman's University, Denton, TX.

317B

318C
319A

320B
Accumulation of a threonine biosynthetic intermediate attenuates general amino acid control by inducing degradation of promoter-bound Gcn4. FNU Yashpal, Hongfang Qiu, Alan G. Hinnebusch. Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

Gene Expression: Translation

321C
Codon Context and Translation Efficiency in Yeast. Caitlin E. Gamble1, Christina Brule2, Stanley Fields1,3, Elizabeth Grayhack2. 1) Genome Sciences, University of Washington, Seattle, WA; 2) University of Rochester School of Medicine and Dentistry, Rochester, NY; 3) Howard Hughes Medical Institute.

322A
Functional analysis of CaMCA1 and EDC3 in oxidative stress response and apoptotic cell death in *Candida albicans*. Jeong-Hoon Jeong, Jong-hwan Jung, Jinmi Kim. Department of Microbiology and Molecular biology, Chungnam National University, Daejeon, South Korea.

323B
Roles of decapping activators in mRNA translation and P-body formation during mating. Daeehee Jung, Yuseon Lee, Jinmi Kim. Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea.

324C

Gene Expression: Other

325A
Improving heterologous cytochrome P450 function in *S. cerevisiae*. Anita Emmerstorfer1, Miriam Wimmer1, Tamara Wriessnegger2, Erich Leitner2, Monika Müller3, Iwona Kaluzna2, Martin Schurmann2, Daniel Mink1, Guenther Zellnig3, Harald Pichler1,2, 3) ACIB GmbH, Petersgasse 14, 8010 Graz, Austria; 2) Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Steyrergasse 9, 8010 Graz, Austria; 3) DSM Innovative Synthesis B.V., Urmroenderbaan 22, 6167 RD Geleen, The Netherlands; 4) Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria; 5) Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria.

326B
Mutants defective in stress granule formation exhibit a deregulated stress response. Elena Garre1, Xiaoxue Yang2, Yi Shen3, Xinxin Hao1, Daniel Krumlinde1, Marija Cvijovic1,2, Christina Arens1, Thomas Nystrom1, Beidong Liu1,2, Per Sunnerhagen1. 1) Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden; 2) School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China; 3) Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden; 4) Department of Mathematical Sciences, University of Gothenburg, Göteborg, Sweden.

327C
Securing autoselection in yeast ACNase killer toxin systems by mRNA fragmentation. Alene Kast, Friedhelm Meinhardt. Institute of Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany.

328A
Gene copy number and colony morphology in wild yeast strains. Derek Wilkinson1, Vratislav Stovicek2, Libuse Vachova2, Zdena Palkova1. 1) Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague 2, Czech Republic; 2) Institute of Microbiology of the ASCR, v.v.i., Videska 1083, 142 20 Prague 4, Czech Republic; 3) The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Horsholm, Denmark.

329B
Chaperonins enabled functional expression of bacterial xylose isomerases in yeast. Jianjun Yang1, Min Qi1, Kristen Kelly1, Sarah Rush2, Luan Tao2, Rick Ye1, Paul Viitanen2, William Hitz2. 1) Biotechnology, DuPont Central Research and Development, Experimental Station, Wilmington, DE; 2) DuPont Industrial Biosciences, Experimental Station, Wilmington, DE.

330C
Dissecting the mechanism of gene-dosage response in naturally aneuploid, wild isolates of *Saccharomyces cerevisiae*. Mun Hong Yong1, James Hose1, Audrey Gasch1,2. 1) Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI; 2) Genome Center of...
Global Analysis: Evolution/Comparative Genomics

331A
Rerouting resources from cell size to population growth drives evolution of cancer drug resistance in yeast. E. Alonso-Perez1, N. Srinivas1, M. Kakavandi1, K. Ludwig1, I. Jonassen2, SW Omholt3, P. Sunnerhagen1, J. Warringer1. 1) Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden; 2) Uni Computing, Uni Research AS, Bergen, Norway; 3) Center for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (UMB), Ås, Norway.

332B
Inferring Genetic Networks through Evolutionary Signatures. Zelia Ferreira1, Jennifer Walker1, Allyson O'Donnell2, Nathan Clark1. 1) Computational and Systems Biology, University of Pittsburgh, PA; 2) Department of Cell Biology, University of Pittsburgh, PA.

333C
The mating pathway as a model for the genetic analysis of complex traits. Michael W. Dorrity1,2, Josh T. Cuperus3, Christine Queitsch2, Stanley Fields2,3. 1) Department of Biology, University of Washington, Seattle, WA; 2) Department of Genome Sciences, University of Washington, Seattle, WA; 3) Howard Hughes Medical Institute, University of Washington, Seattle, WA.

334A
Functional Evolution of SIR1 In Saccharomyces cerevisiae And Related Budding Yeasts. Aisha Ellahi, Jasper Rine. Dept MCB, Univ California, Berkeley, Berkeley, CA.

335B
Microevolution of a human fungal pathogen in a mouse model of systemic infection. Juliana Ene1, Matthew Hirakawa1, Emily Mallick2, Christina Cuomo2, Richard Bennett1. 1) Molecular Microbiology and Immunology, Brown University, Providence, RI; 2) Broad Institute, Cambridge, MA.

336C

337A
Emergence of Novel Ecological Interactions in an Evolving Cooperative Community. Robin Green1,2, Chichun Chen1, Jose Pineda1, Wenying Shou1. 1) Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA.

338B
Tracking the genetic factors of Saccharomyces cerevisiae strains under the selective pressures of the beer brewing process. Noah A. Hanson, Celia Payen, Maitreya Dunham. Genome Sciences, University of Washington, Seattle, WA.

339C
Ploidy-regulated variation in biofilm-related phenotypes in natural isolates of Saccharomyces cerevisiae. Elyse A. Hope, Maitreya J. Dunham. Department of Genome Sciences, University of Washington, Seattle, WA.

340A
A two loci genetic incompatibility leads to offspring respiratory deficiency within the Saccharomyces cerevisiae species. Jing Hou, Anne Freidrich, Joseph Schacherer. Laboratoire de génétique moléculaire, génomique et microbiologie, Université de Strasbourg/CNRS UMR7156, Strasbourg, France.

341B
Site-directed changes to CgPMU1 convert it into a broad range acid phosphatase like CgPMU2 in Candida glabrata. Christine L. Issue, Kelly A. Orlando, Sarah G. Leone, Danielle L. Davies, Dennis D. Wykoff. Biol Dept, Villanova Univ, Villanova, PA.

342C
Why do some yeast species have duplicate copies of GALactose network genes? Meihua Christina Kuang1,2, Chris Hittinger1,2. 1) Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI; 2) Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, WI.

343A
Single-cell analysis reveals natural variability in a potential bet-hedging trait. Colin S. Maxwell, Paul Magwene. Department of Biology, Duke University, Durham, NC.

344B
Combining natural sequence variation with high throughput mutational data to reveal protein interaction sites. Daniel Melamed1,2, David Young2, Christina Miller1,2, Stanley Fields1,2,3. 1) Howard Hughes Medical Institute; 2) Department of Genome Sciences, University of Washington; 3) Department of Medicine, University of Washington.
Poster Session Listings

345C
Transport differences in two recently high affinity HXT paralogous. A. Mena1,2, E. Barrio3, F. N. Arroyo-López3. 1) University of Valencia Calle Doctor Moliner, 50, 46100 Burjasot, Valencia; 2) IATA-CSIC Institute of Agrochemistry and Food Technology Carrer Catedrátic Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia; 3) CSIC Instituto de la Grasa, Department of Food Biotechnology Av Padre García Tejero, 4, 41012 Sevilla.

346A
Novelty by necessity: Loss of sulfate transport in yeast repeatedly selects for mutations in an uncharacterized transporter YIL166C in sulfate-limited environments. Aaron W. Miller, Ivan Liachko, Anna B. Sunshine, Maitreya J. Dunham. Genome Sciences, University of Washington, Seattle, WA.

347B
The Genetic Architecture of Invasive Growth in a Clinical Isolate of S. cerevisiae. Helen A. Murphy1,2, Debra Murray3, Jason Smyth4, Cliff W. Zeyl4, Paul M. Magwene5. 1) Biology, William and Mary, Williamsburg, VA; 2) Biology, Duke University, Durham, NC; 3) Biology, Wake Forest University, NC.

348C
Mitochondrial-Nuclear Epistasis and Coevolution in Natural Isolates of Saccharomyces cerevisiae. Swati Paliwal, Anthony C. Fiumera, Heather L. Fiumera. Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902.

349A
Investigating reticulate evolution in the Saccharomyces genus and repeating it for the bioethanol industry. David Peris Navarro1,2, Kayla Sylvester3, Maria Sardi4, William Alexander5, Diego Libkind1, Paula Gonçalves6, Josè Sampaio1, Lucas Parreiras3, Trey Sato4, Chris Hittinger5,6. 1) Department of Genetics, Genome Center of Wisconsin, University of Wisconsin-Madison, WI; 2) Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI; 3) Laboratorio de Microbiologia Aplicada y Biotecnologia, Instituto de Investigaciones en Biodiversidad y Medio-ambiente, INIBIOMA (CONICET-UNComahue), Bariloche, Argentina; 4) Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidad Nova de Lisboa, Caparica, Portugal.

350B
‘Natural and experimental evolutionary dynamics of Saccharomyces killer yeast’. Magdalena Pieczynska1,2, Ryszard Korona3, J. Arjan G. M. de Visser4. 1) Laboratory of Genetics, Plant Sciences Group, Wageningen, Netherlands; 2) Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, Poland.

351C
Natural variation in mutational robustness among strains of Saccharomyces cerevisiae. Marcin Płechn1, J. Arjan G. M. de Visser2, Ryszard Korona3. 1) Institute of Environmental Sciences, Department of Biology, Jagiellonian University, Kraków, Poland; 2) Genetics Lab, Plant Sciences Group, University of Wageningen, The Netherlands.

352A
Genetic variation acting on protein translation and degradation rates is common in Saccharomyces cerevisiae. Daniel Pollard, Homa Rahnemoun, Scott Rifkin. Biological Sciences, UCSD, La Jolla, CA.

353B
Genome-wide patterns of genetic variation reveal chromosome-scale heterogeneous evolution in a protoploid yeast. Anne Friedrich1, Paul Jung1, Cyrielle Reisser2, Gilles Fischer3, Joseph Schacherer1. 1) Department of Genetics and Genomics, University of Strasbourg, Strasbourg, France; 2) Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Biologie Computationnelle et Quantitative, Paris, France; 3) CNRS, UMR7238, Biologie Computationnelle et Quantitative, Paris, France.

354C
Genome sequence and evolution of Saccharomyces carlsbergensis, the world’s first pure culture lager yeast. Andrea Walther, Ana Hesselbart, Jurgen W. Wendland. Yeast Genetics, Carlsberg Laboratory, Copenhagen V, Denmark.

355A
Evolutionary Exploration of Yeast Hap4p Regulatory Networks. Ruoyu Zhang, Xiaoxian Guo, Zhenglong Gu. Division of Nutritional Science, Cornell University, Ithaca, NY.

Global Analysis: Genomics

356B
The yeast phenome: mapping the functional organization of a eukaryotic cell through an integrative study of genome-wide phenotypic surveys. Anastasia Baryshnikova1, Monica Sanchez2, Maitreya Dunham2. 1) Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ; 2) Department of Genome Sciences, University of Washington, Seattle, WA.

357C
Multiplexed genome engineering in Saccharomyces cerevisiae. Josh Cuperus1,2, Russel Lo1,2, Stanley Fields1,2. 1) Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; 2) Howard Hughes
Poster Session Listings

Medical Institute, University of Washington, Seattle, Washington 98195, USA.

358A
WITHDRAWN

359B
Multiple global approaches for deciphering the molecular basis of low temperature adaptation in wine yeast. Estefani Garcia-Rios1, Maria Lopez-Malo1,2, Jose Manuel Guillamon1. 1) Departamento de Biotecnologia de los alimentos, Instituto de Agroquimica y Tecnologia de los Alimentos (CSIC), Avda. Agustin Escardino, 7, E-46980-Paterna, Valencia, Spain; 2) Biotecnologia Enológica, Departament de Bioquimica i Biotecnologia, Facultat de Enologia, Universitat Rovira i Virgili. Marcelli Domingo s/n, 43007, Tarragona, Spain.

360C
Expression adaptation and gene-dosage response in naturally aneuploid strains of wild S. cerevisiae. James Hose1, Chris Yong1, Zhishi Wang2, Michael A. Newton2, Audrey P. Gasch1. 1) Laboratory of Genetics & Genome Ctr, U. Wisconsin-Madison, Madison, WI; 2) Departments of Statistics & Biostatistics & Medical Informatics, U. Wisconsin-Madison, Madison, WI.

361A
MKT1 interacts with nitrogen metabolism and mitochondrial signaling pathways to modulate sporulation efficiency variation. Saumya Gupta1, Aparna Radhakrishnan1, Julien Gagneur2, Himanshu Sinha1. 1) Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; 2) Gene Center Munich, Department of Biochemistry, Ludwig Maximilians University, 81377 Munich, Germany.

362B
Identification of novel pathways involved in ploidy maintenance in Saccharomyces cerevisiae. P. S. Hung1,2, T. L. Sing1, S. Ohnuki1, B. San-Luis2, J. P. Paw2, M. Costanzo2, C. Nislow2, C. Boone2,4, Y. Ohya1, G. W. Brown1,2. 1) Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; 2) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; 3) Department of Integrated Biosciences, University of Tokyo, Tokyo, Japan; 4) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 5) Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

363C
Cost-effective Genotyping and Karyotyping Using Double Digest-RAD Sequencing in S. cerevisiae. C. albicans and C. glabrata. E. Jeffery1, G. Cromie2, A. Forche2, J. Usher3, K. Haynes3, J. Berman4, A. M. Dudley3. 1) Pacific Northwest Diabetes Research Inst, Seattle, WA. USA; 2) Bowdoin College, Department of Biology, Brunswick, ME. USA; 3) University of Exeter, College of Life and Environmental Sciences, Exeter, UK; 4) Tel-Aviv University, Department of Molecular Microbiology and Biotechnology, Tel-Aviv, Israel.

364A
A higher-throughput accurate method for unraveling the genetic basis of Chronological Life Span in yeast. Paul P. Jung1, Nils Christian1, Daniel Kay1, Aimée M. Dudley2, Alexander Skupin3, Carole L. Linster1. 1) University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Esch-sur-Alzette, Luxembourg; 2) Pacific Northwest Diabetes Research Institute, Seattle.

365B
Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Alaattin Kay, Alexei V. Lobanov, Vadim N. Gladyshev. Medicine, Harvard University, Boston, MA.

366C
Pooled Segregant Sequencing Reveals Genetic Determinants of Yeast Pseudohyphal Growth. Qingxuan Song1, Cole Johnson1, Thomas Wilson1, Anuj Kumar1. 1) Dept. of Mol., Cell., and Dev. Biology, University of Michigan, Ann Arbor, MI; 2) Dept. of Pathology, University of Michigan Medical School, Ann Arbor, MI.

367A
Genetic Incompatibilities in Hybrid Yeast. Samuel M. Lancaster, Miiaetrey J. Dunham. Genome Sciences, University of Washington, Seattle, WA.

368A
An Evaluation of High-Throughput Approaches to QTL Mapping in Saccharomyces cerevisiae. Stefan Wilkening1, Gen Lin1, Emilie Fritsch1, Manu Tekkedil1, Simon Anders1, Raul Kuehn2, Michelle Nguyen2, Raeka Aiyar1, Michael Proctor1, Nikita Sakhaneko1, David Galas1, Julien Gagneur1, Adam Deutschbauer2, Lars Steinmetz1. 1) European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; 2) Stanford Genome Technology Center, Palo Alto, California 94304; 3) Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122; 4) Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg; 5) Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.

369C
An Assessment of Terminal Phenotypes in S. cerevisiae Using Synthetic Genetic Array and High-Content Screening. Dara Lo1, Jason Moffatt1, Brenda Andrews1, Charles Boone1. 1) Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
Poster Session Listings

370A
Beyond Beer and Wine: Isolating Wild Yeast from Unroasted Cacao and Coffee Beans. Catherine Ludlow1, Cecilia Garmanda Torres2, Amy Sirj, Michelle Hays3, Colby Field4, Gareth Cromie5, Eric W. Jeffery5, Aimee M. Dudley5, 1) Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA; 2) Departamento de Biotecnología, Universidad de las Américas, Quito, Ecuador; 3) Department of Molecular Biology, NCCR Program “Frontiers in Genetics”, and Institute of Genetics and Genomics in Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; 4) DKFZ-ZMBH Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; 5) Dipartimento di Biologia, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

371B
Exploring the endocytic pathway by combining high-throughput genetics and high-content microscopy. Mojca Mattiazzi Usaj1, Matej Usaj1, Marinka Zitnik2, Blaz Zupan2, Brenda Andrews1, Charles Boone1. 1) The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada; 2) Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

372C
Navigating the chemical space of large compound libraries using high-throughput chemical genomics. Jeff Piotrowski1, Sheena Li2, Raamesh Deshpande2, Scott Simpkins2, Justin Nelson2, Jacqueline Barber2, Hiroyuki Osada3, Minoru Yoshida4, Chad Myers5, Charlie Boone1. 1) Great Lakes Bioenergy Research Centre University of Wisconsin - Madison, USA 53726; 2) Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan 351-0198; 3) Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; 4) 4. Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College St., Toronto, ON, Canada M5S 3E1.

373A

374B
Transcriptional variations among Saccharomyces cerevisiae strains harboring different alleles of a transcription factor Yrr1. Xiaqiong Rong-Mullins3, Wei Zheng5, Hogune Im2, Erin Mitsunaga2, Michael Snyder2, Jennifer Gallagher3, 1) Biology, West Virginia University, Morgantown, WV; 2) Genetics, Stanford University, Stanford, CA.

375C
Comparative analysis of stress responses in diverse wild yeast strains. Nikolay S. Rovinsky1, Dana J. Wohlbach1, Jeff Lewis1,2, Maria I. Sardi1,2, Wendy S. Schackwitz2, Joel A. Martin3, Shweta Deshpande1, Chris Daum4, Troy K. Sato2, Audrey P. Gasch1,2. 1) Genetics, University of Wisconsin-Madison, Madison, WI; 2) Great Lakes Bioenergy Research Center; Madison, Wisconsin 53706; 3) US Department of Energy Joint Genome Institute; Walnut Creek, California 94598.

376A
Chromatin organization in quiescent yeast. Mark T. Rutledge1, Jon-Matthew Belton1, Mariano Russo2, Job Dekker1, James R. Broach1. 1) Dept. of Molecular Biology, Princeton University, Princeton, NJ; 2) Dept. of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA; 3) Program in Systems Biology, Dept. of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA.

377B
Genomic approaches to understanding Saccharomyces cerevisiae tolerance to lignocellulosic-hydrolysate toxins. Maria I. Sardi1, Dana J. Wohlbach, Audrey P. Gasch. University of Wisconsin-Madison, Madison, WI.

378C
A phenomic assessment of sub-cellular morphology in S. cerevisiae using Synthetic Genetic Array analysis and high-content screening. Erin B. Styles1, Lee Zambaro1, Karen Fourn1, Oren Kraus1,2, Dogus Altintas3, Marco Graf3, Daniele Novarino5, Tina Sing1, Grant W. Brown1, Marco Muzi-Falconi1, Brian Luke2, David Shore2, Brendan Frey2, Zhaolei Zhang1, Charles Boone1, Brenda J. Andrews1. 1) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; 2) Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada; 3) Department of Molecular Biology, NCCR Program “Frontiers in Genetics”, and Institute of Genetics and Genomics in Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; 4) DKFZ-ZMBH Alliance, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; 5) Dipartimento di Bioscienze Universita’ degli Studi di Milano, Milano, Italy.

379A
Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium. Kaj S. Andersen1, Laura G. R. Sorensen1, Rasmus Bojsen2,3, Martin W. Nielsen2,3, Michael Lisby1, Anders Folkesson2,3, Birgitte Regenberg1. 1) Department of Biology, University of Copenhagen, Copenhagen, Denmark; 2) Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark; 3) National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
380B
An all-in-one yeast library - creating a new toolbox for studying the proteome. Uri Weill, Ido Yofe, Maya Schuldiner. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

381C

382A
Mapping resistance to targeted cancer therapeutics using a deep mutational scanning approach in Saccharomyces cerevisiae. Ethan Ahler, Douglas Fowler. Department of Genome Sciences, University of Washington, Seattle, WA.

383B
Synthetic dosage lethality of CTF4 and the identification of orthologs amplified in breast cancer. Eric Bryant1, John Dittmar2, Robert J. D. Reid2, Rodney Rothstein2. 1) Biological Sciences, Columbia University, New York, NY 10027; 2) Genetics and Development, Columbia University Medical Center, New York, NY 10032.

384C
Identification of biological roles for yeast Rbd2, a member of a subfamily of rhomboid proteins implicated in human disease. Christa L. Cortesio1, Eric B. Lewellyn1, Nathaniel I. Krefman1, Catherine C. Wong2, John R. Yates 3rd2, David G. Drubin1. 1) Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA; 2) Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA.

385A

386B

387C
Yeast - it simply has a lot to say about human disease. Selina S. Dwight, Kalpana Karra, J. Michael Cherry. SGD Project. Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305.

388A
Deep mutational scanning of amyloid β to illuminate mechanisms of protein aggregation and chaperone interactions. Vanessa E. Gray, Jason J. Stephany, Douglas M. Fowler. Genome Sciences, School of Medicine at the University of Washington, Seattle, WA, USA.

389B
Solving protein structure with large-scale mutagenesis. Katherine A. Sitko, Douglas M. Fowler, Margaret L. Griset. Genome Sciences, School of Medicine at the University of Washington, Seattle, WA.

390C

391A
Anticancer ruthenium complex KP1019 induces the heat shock response in yeast. Laura Stultz1, Alexandra Hunsecker2, Evan Grovenstein2, James Mobley3, Pamela Hanson2. 1) Chemistry Department, Birmingham-Southern College, Birmingham, AL; 2) Biology Department, Birmingham-Southern College, Birmingham, AL; 3) Mass Spectrometry/Proteomics Facility, University of Alabama at Birmingham, AL.

392B

393C
S. cerevisiae as a Platform for High Throughput Screening and Variant Analysis of the Sphingosine-1-Phosphate Receptor Family. Jacob Hornick1, Son Nguyen4, Pam Benegal1, Shen-Shu Sung2, James Broach'. 1) Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA; 2) Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA; 3) Department of Molecular Biology, Princeton University, Princeton, NJ; 4) Union College, Schenectady, NY.
Poster Session Listings

394A
Ribosomal Perturbation as a Strategy for Improving Protein Biogenesis in Cystic Fibrosis. Mert Icyuz1, Kathryn E. Oliver2, Eric J. Sorscher2, John L. Hartman IV3.
1) Genetics, University of Alabama at Birmingham, BIRMINGHAM, AL; 2) Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, BIRMINGHAM, AL.

395B
Arg-Trp-Arg based peptidomimetics with antifungal activity. Camilla E. Larsen1, Camilla J. Larsen2, Henrik Franzyk2, Birgitte Regenberg1.
1) Department of Biology, University of Copenhagen, Copenhagen, Denmark; 2) Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.

396C
Expression, modification and characterization of fungal natural products in Saccharomyces cerevisiae. C. Harvey, J. Li, M. Hillenmeyer, R. Davis. Stanford Genome Technology Center, Stanford University, Stanford, CA.

397A
Chemical genomic profiling in S. cerevisiae and S. pombe to functionally annotate large compound collections. Sheena C. Li, Jeff Piotrowski, Raamesh Deshpande, Scott Simpkins, Justin Nelson, Jacqueline Barber, Minoru Yoshida, Chad L. Myers, Charles Boone.
1) RIKEN CSRS, Wako, Saitama, Japan; 2) University of Wisconsin-Madison; 3) University of Minnesota; 4) University of Toronto, Canada.

398B
1) Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Terrance Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; 3) Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.

399C
Shared pHenotypes: Using a yeast genetic screen as a way to identify mammalian genes required for cellular survival during intracellular acidification. Jennifer A. McQueen, John Shin, Susan Li, Pamela Austin, Calvin Roskelley, Christopher Loewen.
Cellular and Physiological Sciences, Univ British Columbia, Vancouver, BR., BC, Canada.

400A
The Effects of Omega-3-Fatty Acids on Intracellular inositol levels in Saccharomyces Cerevisiae. Marlene N. Murray, Bomi Kim, Jee Yeon Lee. Biology, Andrews University, Berrien Springs, MI.

401B
Making Genetic Suppressors for Yeast Genes Whose Orthologs are Involved in Human Retinitis Pigmentosa. Zahra NaghdiGheslaghi, Jolanda van Leeuwen, Brenda Andrews, Charles Boone. Donnelly Centre, University of Toronto, Toronto, ON, Canada.

402C
Department of Biochemistry and Molecular Biology, Rutgers University - R W Johnson Medical School, Piscataway, NJ.

403A
1) Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 2) Terrance Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; 3) Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.

404B
A connection between chromosome condensation/cohesion pathways and the toxic effects of the Huntington disease protein in a yeast model. Biranchi N. Patra, Scott Breslow, Jocelyn Wensel, Animesh Ray. School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA.

405C
1) School of Applied Sciences- Biosciences, RMIT University, Melbourne-Bundoora, VIC, Australia; 2) Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia; 3) School of Applied Sciences, Applied Chemistry, RMIT University, Melbourne, Victoria 3000, Australia.

406A
A yeast synthetic genetic interaction screen predicts the importance of Plk1 for the viability of cancer cells over-expressing CKS1b. Robert J. D. Reid, Xing Du, Ivan Sunjevaric, Vinayak Rayannavar, John Dittmar, Matt Maurer, Rodney Rothstein.
1) Genetics & Development, Columbia University Medical Center, New York, NY; 2) Dept of Medicine, Columbia University Medical Center, New York, NY.

407B
1) Organic Chemistry, Institute of Chemistry, UNESP, Araraquara, Sao Paulo, Brazil; 2)
Poster Session Listings

Biological Sciences, School of Pharmaceutical Sciences, UNESP, Araraquara, SP, Brazil.

408C

409A
Developing assays for pathogenic human variation via systematic testing of yeast/human complementation. Song Sun1,2,3,4,5, Fan Yang1,2,3,4, Michael Costanzo1,2, Rose Oughtred6, Jodi Hirschman8, Chandra Thesefeld7, Analyn Yu1,2,3,4, Tanya Tyagi1,2,3,4, Brenda Andrews1,2, Nidhi Sahni7,8, Song Yi7,8, David Hill7,8, Marc Vidal7,8, Charlie Boone1,2, Kara Dolinski6, Frederick Roth1,2,3,4,7. 1) Donnelly Centre, University of Toronto, Toronto, Ontario, Canada; 2) Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; 3) Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; 4) Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; 5) Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; 6) Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; 7) Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; 8) Department of Genetics, Harvard Medical School, Boston, MA, USA.

410B

Global Analysis: Informatics/Computational Biology

411C

412A
TreeView 3.0: Visualization and Analysis of Two-Dimensional Genomic Data. Christopher Kel, Anastasia Baryshnikova. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ.

413B
WITHDRAWN

414C
Tyre: An in Silico Simulator of Population Dynamics. Jill N. Wright1, Jessica Stilwell1, Christopher Zahner1, Hui Hua1, Brandt L. Schneider1. 1) Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX; 2) Texas Tech University, Howard Hughes Medical Institute, Lubbock, TX.

415A

Global Analysis: Networks

416B
Profiling the RNA maturation landscape in yeast. Alexander Ratushny1,2, Marlene Oeffinger1, Wei-Ming Chen1, Karen Wer4, Peter Fridy3, Richard Rogers1, Ramsey Saleem1,2, Garrett Poshusta1, Michael Rout1, John Atchison1,2. 1) Systems Biology, Institute for Systems Biology, Seattle, WA, USA; 2) Seattle Biomedical Research Institute, Seattle, WA, USA; 3) Rockefeller University, New York, NY, USA; 4) Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.

417C
Cin5, Gln3, Hmo1, and Zap1 Contribute to the Gene Regulatory Network Controlling the Cold Shock Response in Saccharomyces cerevisiae. Kam D. Dahlquist1, Ben G. Fitzpatrick1, Cybele Arsan1, Wesley T. Citti1, Kevin C. Entzinger1, Andrew F. Herman1, Lauren N. Kubeck1, Stephanie D. Kuebbs2, Heather King1, Elizabeth M. Liu1, Matthew Mejia1, Kenny R. Rodriguez1, Nicholas A. Rohacz2, Olivia S. Sakhon1, Katrina Sherbina2, Alondra J. Vega2. 1) Biol, Loyola Marymount Univ, Los Angeles, CA; 2) Math, Loyola Marymount Univ, Los Angeles, CA.

418A
Dissecting the Regulation of the Yeast Pleiotropic Drug Response. Colin Harvey, Ulrich Schlecht, Sundari Suresh, Robert St. Onge, Ronald Davis, Maureen Hillenmeyer. Stanford Genome Technology Center, Stanford University, Palo Alto, CA.

419B
Transferability of protein-protein interactions and protein function between closely related species. Hsueh-lui Ho1, Maxime Huvet1, Michael Stumpf2, Ken Haynes1. 1) Biosciences, 3rd floor Geoffrey Pope Building, Exeter University, Exeter, Devon, EX4 4QD United Kingdom; 2) Theoretical System Biology, Imperial College London, London, United Kingdom.
420C
Measuring changes in genetic interactions over environments using iSeq. Mia Jaffe1, Gavin Sherlock1, Sasha F. Levy2. 1) Dept of Genetics, Stanford University, Stanford, CA; 2) Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY.

421A
Extensive inbound and feedback signal integration by Protein Kinase A. Christian Landry1, Marie Filteau1, Guillaume Diss1, Francisco Torres-Quiroz2, Alexandre Dube1, Isabelle Gagnon-Arsenault1, Andree-Eve Chretien1, Ugo Dionne2, Anne-Lise Steunou1, Andrea Schraffl3, Jacques Coté4, Nicolas Bisson2, Eduard Stefan1. 1) Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada; 2) Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, G1V 0A6, Canada; 3) University of Innsbruck, Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), A-6020 Innsbruck, Austria.

422B
Genome-scale analyses of Saccharomyces cerevisiae strains evolved for bio-ethanol production under aerobic and anaerobic growth conditions. Kevin S. Myers1,2, Nicholas M. Riley3,4, Trey K. Sato5, Joshua J. Coon4,5, Audrey P. Gasch3,4,5, Audrey P. Gasch1,2. 1) Laboratory of Genetics, UW-Madison, Madison, WI; 2) Great Lakes Bioenergy Research Center, UW-Madison, Madison, WI; 3) Department of Chemistry, UW-Madison, Madison, WI; 4) Genome Center, UW-Madison, Madison, WI; 5) Department of Biomolecular Chemistry, UW-Madison, Madison, WI.

423C
A gene network model of cellular aging and its applications. Hong Qin. Biology, Spelman College, Atlanta, GA.

424A
Genetic pathways involved in response to the phenol-based compounds bisphenol-A (BPA), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) in Saccharomyces cerevisiae. Shrava L. Raju1, Julia Levy2, Elizabeth Martin3, Mia Pecora1, Gretchen Edwards-Gilbert1,2,3. 1) Scripps College, Claremont, CA; 2) Pitzer College, Claremont, CA; 3) Claremont McKenna College, Claremont, CA.

425B
Widespread changes in the yeast protein interaction network in response to diverse environmental cues. U. Schlecht1, J. Smith1, A. Celaj2, S. Suresh1, M. Miranda1, R. W. Davis1, F. Roth1, R. P. StOnge1. 1) Biochemistry, Stanford University, Palo Alto, CA; 2) Donnelly Centre, University of Toronto, Toronto, Ontario.

426C
TheCellMap.org: storing and visualizing genetic interactions in S. cerevisiae. Matej Usaj1, Michael Costanzo1, Chad L. Myers2, Brenda Andrews1, Charles Boone1, Anastasia Baryshnikova1. 1) Donnelly CCBR, University of Toronto, Toronto, Ontario, Canada; 2) Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA; 3) Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

427A
Unraveling protein network evolution through whole-proteome cross-species interactome mapping. Haiyuan Yu. Biological Statistics and Computational Biology, Cornell University, Ithaca, NY.

Global Analysis: Other Yeasts

428B
Functional Characterisation of Candida glabrata Open Reading Frames with no Orthologue in Saccharomyces cerevisiae. Lauren C. Ames1, Jane Usher1, Ilias Kounatidis2, Petros Ligoxygakis1, Ken Haynes1. 1) Biosciences, University of Exeter, United Kingdom; 2) Department of Biochemistry, University of Oxford, UK.

429C
Comparative genomics and transcriptomics of the industrial yeast species Dekkera (Brettanomyces) bruxellensis. Anthony Borneman1, Lucy Joseph2, Toni Cordente1, Robyn Kievel1, Ryan Zeppel1, Warren Albertin1, Isabelle Masneuf-Pomarede1, Christ Curtin1. 1) Australian Wine Research Institute, Urrbrae, SA 5064, South Australia, Australia; 2) Department of Viticulture and Enology, University of California, Davis, 595 Hilgard Lane, Davis, CA 95616; 3) Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, F-33140 Villenave 13 d'Ornon, France.

430A
Assembling the Schizosaccharomyces kambucha genome and the dynamic transposon landscape of fission yeasts. Michael Eickbush1, Sarah Zanders1, Gerry Smith1, Harmit Malik1. 1) Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Howard Hughes Medical Research Institution, Chevy Chase, MD.

431B
Evolutionary genomics of ecological speciation in Saccharomyces paradoxus. Jean-Baptiste Leducq, Lou Niely-Thibaut, Guillaume Charron, Christian Landry. Département de Biologie, Université Laval, Quebec, QC, Canada.
432C
Comparative Genomics of Yeast Genome Conformation and Functional Annotation by Multiplexed Hi-C. Ivan Liachko, Joshua Burton, Jay Shendure, Maitreya Dunham. Genome Sciences, University of Washington, Seattle, WA.

433A

434B

Global Analysis: Proteomics

435C
Evaluating Common Humoral Responses Against Fungal Infections With Yeast Protein Microarrays. Paulo Coelho1,2, Hogune Im3, Karl Clemons1,2, Michael Snyder1, David Stevens1. 1) Dept of Medicine, Stanford University, Palo Alto, CA; 2) Calif. Inst. Med. Res., San Jose, CA; 3) Dept of Genetics, Stanford University, Palo Alto, CA.

436A
The caveolin-binding motif of the pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is required for in vivo export of cholesteryl acetate. Rabih Darwiche1, Vineet Choudhary2, David Gfeller2, Olivier Michielin2, Vincent Zoet2, Roger Schneiter1. 1) Division of Biochemistry, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; 2) Molecular Modeling, Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopole, 1015 Lausanne, Switzerland.

437B
Phosphoproteome analysis of the DNA damage response during S phase in Saccharomyces cerevisiae. Dongqing Huang, Brian Piening, Corey Weinert, Amanda Paulovich. Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, WA.

438C
Functional profiling of the ubiquitin-proteasome system of protein degradation. Anton Khmelinskii1, Bernd Fischer2, Joseph D. Barry2, Matthias Meurer1, Daniel Kirrmaier1, Michael Costanzo3, Charles Boone3, Wolfgang Huber2, Michael Knop1. 1) Center for Molecular Biology of the University of Heidelberg (ZMBH), DFKZ-ZMBH Alliance, Heidelberg, Germany; 2) European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; 3) Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.

439A
Stable-seq: High-throughput Analysis of in vivo Protein Stability. Ikjin Kim1, Christina Miller1,2, Stanley Fields1,2, 1) Department of Genome Sciences, University of Washington, Seattle, WA, USA; 2) Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; 3) Department of Medicine, University of Washington, Seattle, WA, USA.

440B
Proteomic analysis and metabolic exploration of Yarrowia lipolytica under different culture conditions. J. Shi, W. Chen. Nanyang Technological University, Singapore.

441C
Identifying global changes in protein acetylation following heat shock. Rebecca E. Sides, Jeffrey A. Lewis. Biological Sciences, University of Arkansas, Fayetteville, AR.

442A
Identification of long-lived proteins in cells undergoing repeated asymmetric divisions. NH Thayer1,2,3, C. Leverich1,2, E. Marsh1, M. Fitzgilbert1, ZW Nelson1, KA Henderson1, J. Hsu1, DE Gottschling1. 1) Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Molecular and Cellular Biology Program, University of Washington, Seattle, WA; 3) These authors contributed equally to this work.

443B
A systematic investigation of small metabolite interactions with regulatory proteins in yeast. G. X. Yang, X. Li, M. Bruno, M. Snyder. Department of Genetics, Stanford University, Stanford, CA.

Global Analysis: Technology

444C
Measuring stress response in Saccharomyces cerevisiae using Isotopic Ratio Outlier Analysis (IROA) for metabolome-wide quantitation. Felice A. de Jong, Chris Beecher. IROA Technologies LLC, Ann Arbor MI.
Poster Session Listings

445A

446B

447C

Biosensors engineered from conditionally stabilized ligand-binding domains. Benjamin Jester, Christine Tinberg, Justin Feng, Dan Mandell, George Church, David Baker, Stanley Fields. 1) Howard Hughes Medical Institute, University of Washington, Seattle, WA; 2) Department of Genome Sciences, University of Washington, Seattle, WA; 3) Department of Biochemistry, University of Washington, Seattle, WA; 4) Division of Medical Sciences, Harvard Medical School, Boston, MA; 5) Department of Genetics, Harvard Medical School, Boston, MA; 6) Department of Medicine, University of Washington, Seattle, WA.

448A

Acetylation of carotenoids in Yarrowia lipolytica improves cell viability and titers. Lisa Laprade, Maria Mayorga, Chris Farrell, Peter Houston, Dan Grenfell-Lee, Joshua Trueheart. DSM Microbia, Lexington, MA.

449B

Phenomic Analysis of TOR Signaling and dNTP Metabolism. Sean M. Santos, Chandler Stisher, Darryl Outlaw, Jingyu Guo, John L. Hartman IV. Department of Genetics, University of Alabama at Birmingham, Birmingham, AL.

450C

An automated system for time-lapse imaging of microbial biofilms. Adrian Scott, Aimée M. Dudley. Pacific Northwest Diabetes Research Institute, Seattle, WA.

451A

Development of ODELAY, a scalable, automated, multiparameter growth rate analysis platform, and application to a yeast model of Parkinson’s disease. David J. Dilworth, Alexander V. Ratushny, Thurston E. Herricks, Jennifer J. Smith, Song Li, John D. Aitchison. 1) Institute for Systems Biology, Seattle, WA; 2) Seattle Biomedical Research Institute, Seattle, WA.

452B

Genome Wide Manipulation of Transcription in Saccharomyces cerevisiae using CRISPR-Cas9 Transcription Factors. Justin D. Smith, Ulrich Schlecht, Sundari Suresh, Ron W. Davis, Leopold Parts, Robert P. St. Onge. 1) Department of Genetics, Stanford University School of Medicine, Stanford, CA; 2) Stanford Genome Technology Center, Stanford University, Palo Alto, CA; 3) Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Global Analysis: Other

453C

Seeking a metabolic understanding of chronological aging. Haley Albright, Crystal Maharrey, Daniel Smith, John L. Hartman IV. Department of Genetics, University of Alabama at Birmingham, Birmingham, AL.

454A

455B

Instant killing of yeast for protein studies during continuous culture. Sara S. Dick, Khyla Rose Alorro, Sean McNabney. Biology, Valparaiso University, Valparaiso, IN.

456C

457A

Reverse Two Hybrid, a systematic approach for identifying genes and pathways that regulate a specific protein-protein interaction. Ifat Lev, Marina Volpe, Shay Bev Aroya. Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

458B

459C

Staying current and modern: Overhauling an actively-used model organism database website. Kelley M. Paskov, Stacia R. Engel, Gail Binkley, J. Michael Cherry. Department of Genetics, Stanford University, Stanford, CA.
460A
Underlying the phenotypic contribution of a single quantitative trait locus in yeast are effects of seven genes and their epistatic interactions. R. Shapira, T. Benbenishty, L. David. ANIMAL SCIENCES, FACULTY OF AGRICULTURE, FOOD AND ENVIRONMENTAL QUALITY SCIENCES, THE HEBREW UNIVERSITY OF JERUSALEM, ISRAEL, REHOVOT, ISRAEL.

461B
Stability and Patterning in Microbial Communities: Lessons from Engineered Yeast Populations and Mathematical Modeling. Wenying Shou1, Babak Momeni1, Kristine Brileya2, Matthew Fields2. 1) Fred Hutchinson Cancer Research Center, Seattle, WA; 2) Montana State University, Bozeman, MT.

462C
Regulation of biofilm development through the simultaneous activation and repression of functionally distinct extracellular proteins. Zhihao Tan1,2, Michelle Hays1, Cecilia Garmendia-Torres3, Gareth A. Cromie2, Amy Sirr2, Eric W. Jeffery2, Patrick May4, Aimée M. Dudley1,2. 1) Molecular and Cellular Biology Program, University of Washington, Seattle, WA; 2) Pacific Northwest Diabetes Research Institute, Seattle; 3) Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; 4) Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg.

Academic Teaching

463A
Interdisciplinary research on anticancer ruthenium complexes links undergraduate courses and improves student learning and confidence. Pamela Hanson1, Laura Stultz2. 1) Biology Department, Birmingham-Southern College, Birmingham, AL; 2) Chemistry Department, Birmingham-Southern College, Birmingham, AL.

464B
The 15-week PhD: research methods training for MS Biotechnology students through laboratory investigations of yeast cell physiology. Robert M. Seiser. Biological, Chemical and Physical Sciences, Roosevelt Univ, Schaumburg, IL.

465C
WITHDRAWN
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book. The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brion, Christian</td>
<td>Cottier, Stéphanie</td>
<td>Cau, thai</td>
<td>Cowen, Leah</td>
<td>Cowen, Leah E.</td>
</tr>
<tr>
<td>Britain, D.</td>
<td>David, Michael</td>
<td>Cao, Thai</td>
<td>Cowen, Leah</td>
<td>Crael, Mark</td>
</tr>
<tr>
<td>Broach, James</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cromie, Gareth</td>
</tr>
<tr>
<td>Broach, James, R.</td>
<td>de Lima Alves, Flavia</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Brodsky, Jeff</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Brown, Grant W.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Brown, G. W.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Brown, Joshua A. R.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Brozda, Iabela</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Bubnová, Michala</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Bycker, A.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Budnik, Bogdan</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Burgess, Sean</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Burston, Helen E.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Burton, Joshua</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Burston, Helen E.</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Byon, Buseon</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
<tr>
<td>Byers, James</td>
<td>de Medeiros, Ana Santos</td>
<td>Capp, Jean-Pascal</td>
<td>Cram, Mark</td>
<td>Cronie, Graham</td>
</tr>
</tbody>
</table>

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.
The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Deshpande, Raamesh.............57, 397A
Deshpande, Shweta...............375C
De Souza, Evandro A............86B
Deutschbauer, Adam.............368B
De Virgilio, Claudio...........173B
de Visser, J. A. G. M...........350B, 351C
DeWerff, Samantha J...........166A
De Wulf, Peter..................221B
Deyter, Gary M..................31*
Dick, Sara S.....................455B*
Dilworth, David J..............451A
Ding, J.........................133A*
Dion, Mike......................77B
Dion, Vincent............249C
Dionne, Ugo.....................17
Dujon, Bernard...............255C
Dumas, Kathleen J.............150C
Dufay, J. Noelia..............386B*
Dufay, Caroline................20
Dufay, Hilary...................239B
Dufay, Supipi...............231C
Duina, Andrea...............276C, 277A
Dujon, Bernard.................255C
Dumas, Kathleen J............150C
Dunham, Maitreya...............25, 99C
..................................108C, 228C, 338B, 339C,
..................................346A, 356B, 367A, 432C
Duro, Eris......................33
Dwight, Selina S...............387C*
Dyer, Jayme....................49

E
Eastwood, Michael.............116B*
Edwards-Gilbert, Gretchen.....424A
Edwards, S......................76A*
Egriboz, Onur...............300C

Ehrenreich, Ian...............22*
Eickbusch, Michael...........58, 430A*
Elving, Nils...................294C
Elias, Joshua..................164B
Ellahi, Aisha..................275B*, 334A*
Elston, Timothy.................49
Eltschinger, S................21
Emmerstorfer, Anita...........325A*
Emuna, Lilach..................194B*
Ene, Juliana...................335B*
Eng, Thomas...................227B
Engel, Stacia R..............411C*, 459C
Entzminger, Kevin C...........417C
Erdman, Scott..................134B*
Erinne, Olivia..................309C
Erlanger, Bracha..............229A
Ermarkova, Marina.............29
Estill, Molly S................319A
Evans, Irene M..............195C*

F
Fang, Nancy...................266B
Fang, Nancy N..................51, 218B
Fang, Ruosi...................75C
Farrall, Nicholas.............20
Farrell, Chris...............448A
Feng, Justin..................247B
Ferguson, Rebecca.............244A
Fernández-Murray, J. Pedro..386B
Ferri, Jessica.................293B
Ferreira, Zelia.................332B
Ferreira, Zelia A..............146B*
Field, Colby...................370A
Fields, Matthew..............461B
Fields, Stanley...........64, 99C, 321C,
..................................333C, 344B, 357C, 439A, 447C
Filteau, Marie.................421A
Finke, Cody...................257B
Finnigan, Gregory C...........52*
Fischer, Bernd.................438C
Fischer, Gilles.............61, 353B
Fitziibronn, M.................442A
Fitzpatrick, Ben G...........417C
Fiumura, Anthony C...........348C
Fiumura, H L.................140B, 336C, 348C
Fletcher, Andrew.............180C
Folkesson, Anders...........379A
Fong, Kimberly..............108C*
Forche, A......................363C
Foster, Leonard J...........51, 218B
Fourn, Karen..................378C
Fowler, Douglas..............382A
Fowler, Douglas M.............388A, 389B
Fowler, Kyle R.................252C*
Fox, Jesse Michael...........196A*
François, Jean-Marie.........295A
François, JM...................93C, 94A
Frandsen, Rasmus.............98B

Franke, Gary..................134B
Frank Searle, Naomi E........280A*
Franzyk, Henri................395B
Frederick, Kendra K..........60*
Freidrich, Anne..............340A
Freudenreich, Catherine H....249C
Frey, B. J.......................79A
Frey, Brendan................378C
Fridy, Peter....................416B
Friedrich, Anne..............353B
Friesen, H.....................79A
Fritsch, Emilie.................368B
Frost, Adam.....................20
Fukuda, Yusuke................50
Fukusaki, Eiichiro............209B
Fultz, Kourtney............147C
Fung, Jennifer................28
Furlan, M......................407B
Futia, Raymond A.............336C*

G
Gagneur, Julien...............361A, 368B
Gagnon-Arsenault, Isabelle...421A
Gaillard, Pierre-Henri.......253A
Galas, David..................368B
Galagher, Jen..................220A
Galagher, Jennifer...........374B
Gallo, Alvaro...............239B
Galvao, Fabio C..............197B*
Gamble, Caitlin E............321C*
Gammie, Alison...............65*
Gammie, Alison E.............234C*
Ganesan, Savita...............106A
Garcia-Martinez, J............291C
Garcia-Martinez, Jose.......373A
Garcia-Rios, Estefaní........359B*
Garcia-Salcedo, Raúl.......179B, 182B
Gardner, Jennifer.............17
Gardner, Timothy...............106A
Garfinkel, David.............54, 265A,
......................................267C, 269B
Garmendia, Cecilia..........297C
Garmendia-Torres, Cecilia....462C
Garmendia Torres, Cecilia....370A
Garre, Elena...............326B*
Gasch, Audrey P.............7, 171C,
..................................330C, 360C*, 375C, 377B, 422B
Gasser, Susan M..............249C
Gaubitz, C.....................21
Geddis, Alyssa................82A
Geiler-Samerotte, Kerry A....23*,
......................................77B*
Georis, I......................298A*
German, Sabrina...............37
Gestaut, Daniel R.............32
Gfeller, David...............436A
Ghaddar, Kassem.............152B
Ghospurkar, P L..............235A*, 250A

51
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.
The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Giaver, G. 410B
Gibney, P. 78C*
Gies, Keegan 273C
Gillet-Markowska, Alexandre 61*
Gladyshev, Vadim N. 365B
Go, Chris 62
Gógl, Gergő 1
Goldman, Aaron 9, 141C
Gonçalves, Paula 24, 349A
González, R. 291C
Gonçalves, Paula 24, 349A
Gottlieb, Rachel 392B
Gottschling, Daniel E. 34, 188B
Gottsching, DE 138C, 442A
Gracz, B. 108C
Grado, Danilla 405C
Gray, Vanessa E. 388A*
Grayhack, Elizabeth 321C
Green, Robin 337A
Gregory, Brian K. 287B*
Grencher, Akos A. 150C
Grenfell-Lee, Dan 448A
Gresham, David 289A*
Griffin, Robert G. 60
Gris, Marco 378C
Gu, Zhelong 314B, 355A
Guazzi, Vincent 227B
Guerrero, G. M. 261C*
Guillalmón, José Manuel 359B
Guillel, Marie 55
Guiney, Evan 164B*
Gullingsrud, Justin 64
Guo, Jingyu 449B
Guo, Xiaoxian 355A
Guo, Xin 305B
Gupta, Ishaan 360C
Gupta, J. 50*
Gupta, Saumya 361A
H
Haase, Steven B. 305B
Hackett, Sean 8
Hahn, Ji-Sook 202A, 303C
Hakverdyan, Zhanna 20
Halim, Randall 44*
Haller, Jasmine 277A
Hammond, James 402C
Hampey, Michael 15*, 402C
Hampton, Randolph 154A
Hamza, Aki 390C*
Hanchard, Julia 62
Hanchard, Julia A. 80B*
Hans, Bharat 82A
Hanson, Noah A. 338B*
Hanson, Pamela 391A*, 463A*
Hao, Xinxin 326B
Harer, John 305B
Haring, Stuart 250A
Haring, Stuart J. 233B, 235A
Harper, Jennifer 277A
Harris, Samantha T. 238A
Harrison, Benjamin 270C
Hart, Kathryn M. 456C*
Hartman, John L. 449B
Hartman IV, John L. 394A, 453C
Harvey, C. 396C
Harvey, Colin 418A*
Hashemi, Jordan 270C
Hashimoto, Tatsu 77B
Hawkins, Kristy 106A
Haye, Joanna E. 234C
Hayes, K. 363C
Haynes, Ken 419B, 428B
Hays, M. 297C, 370A, 462C
Hazan, R. 143B
Hazzon, Tony 147C*, 221B*
He, H. 199A
Heidenreich, Erich 236B*
Heider, Margaret 20
Hejlova, Marcela 91A
Henderson, K. 442A
Henderson, K. 314B, 355A
Herrero, Kiersten A. 34*
Herauf, Anna 250A
Herman, Andrew F. 417C
Herman, Paul 186C
Herr, Alan 237C*
Herrero, E. 222C*
Herricks, Thurston E. 451A
Hesselbart, Ana 354C
Hesselberth, J. 260B, 290B
Hetenyi, Csaba 1
Hickman, Mark 27
Hickson, Meleah A. 56*
Hilder, P. 241A, 271A
Hilder, P. 231C, 272B, 390C
Hilder, Philip 248B
Hilder, Philip A. 60
Hildebrand, Erica Marie 223A*
Hildreth, Jonathan 269B
Hill, David 409A
Hillenmeyer, M. 396C
Hillenmeyer, Maureen 418A
Hinnebusch, Alan G. 320B
Hirakawa, Matthew 335B
Hirata, Aki 105C
Hirschman, Jodi 409A
Hittinger, Chris 342C, 349A
Hittinger, Chris Todd 24*
Hitze, William 329B
Hlavacek, Otakar 81C*
Ho, Hsueh-i 419B*
Ho, Krystina 266B
Ho, Yi-Hsuan 7*
Hochstrasser, Mark 151A
Hochwagen, Andreas 119B
Hoffman, Charles S. 392B*
Hofmann, Analise K. 198C*
Hohmann, Stefan 179B, 182B
Hollenstein, David 293B
Holzwarth, G. 133A
Hong, S.-P. 199A*
Honigberg, Saul M. 117C*
Hooda, Jagmohan 193A, 205A
Hood-DeGrenier, J K. 82A*
Hooper, Michael 112A
Hope, Elyse A. 339C*
Hopkins, Kelly 134B
Hopper, Anita 46, 288C
Hopper, Anita K. 285C
Hower, James E. 300C*
Horecka, Joe 445A*
Hornick, Jacob 393C*
Horvitz, Andrew 446B*
Hose, James 7, 330C, 360C
Hoshida, H. 118A*
Hoshida, Hisashi 258C
Hou, Jing 340A*
Houston, Peter 448A
Howe, LeAnn J. 51, 218B
Howe, Martha M. 175A
Hsu, Hsiang-En 281B*
Hsu, J. 442A
Hua, Hui 414C
Huang, Dongqing 437B*
Huang, Linda 125B
Huber, Alexandre 184A
Huber, Wolfgang 438C
Hubmann, Maria 236B
Hägel, Helmut 405C
Hughes, Adam L. 34
Hughes, A. L. 138C
Hughes, Robert E. 150C
Hughes Hallett, James 160A
Hughson, Frederick M. 18
Humphreys, Neil A. 119B*
Hung, P. S. 362B*
Hunsucker, Alexandra 391A
Huntoon, Rebecca L. 285C*
Huvet, Maxime 419B
Hwang, M. 292A
Hyppa, Randy W. 253A*
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

J
Jackson, R.199A
Jaffe, Mia420C*
Jain, Bhawik189C
James, Michael134B
Janke, Ryan10, 282C*
Jansen, J.76A
Jaquenoud, Malika173B
Jarosz, Daniel43*
Jaspersen, Sue63*
Jäverlin, Aino299B
Jeffery, E.363C*
Jeffery, Eric297C
Jeffery, Eric W.370A
Jeng, EunMi85A
Jeong, Jeong-Hoon322A
Jessulat, Matthew145A
Jessulat, Matthew G. M.135C*
Jester, Benjamin447C
Jiang, Hanxiao301A*
Jiang, Yu165C*
Jiao, Zhihua75C
Jin, Chunyan162C
Jin, H.185B, 302B*
Jin, Huiyan309C
Jin, Liang120C*
Jinks-Robertson, Sue244A
Johansen, Jesper200B*
Johnson, C.53
Johnson, Cole366C
Johnson, Paige276C
Johnson, Richard112A
Johnston, Mark109A*
Johnston, Stephen D.166A*
Jonassen, I.331A
Joseph, Fraulin29
Joseph, Lucy429C
J. Purzycka, Katarzyna267C
Jung, Daehee323B
Jung, Daehee322A
Jung, Paul353B
Jung, Paul P.71B, 364A*
Jung, Soo-Jin136A*
J. van der Klei, Ida53*

K
Kabashi, Merita316A
Kachroo, Aashiq H.66*
Kahan-Aedin, Smdaar121A
Kakavandi, M.331A
Kalina, Raghav20
Kaluarachchi Duffy, Supipi272B*
Kaluzna, Iwona325A
Kamara, Sorma44
Kamei, Yukiko208B
Kang, JiWon58
Kannan, N.54
Kao, Cheng-Fu281B
Kaplan, C.302B
Kaplan, Craig309C
Karagiosis, Sue A.433A
Karra, Kalpana387C
Karunananth, Sheelaranil161B
Karuppasamy, M.21
Kassir, Yona121A*
Kast, Alene327C*
Katta, Sreenivasulu S.17
Kaur, Jaiwinder132C
Kay, Daniel364A
Kaya, Alaaatin365B*
Keil, Christopher412A*
Kellems, Martha276C*
Kelly, Kristen329B
Kempf, Claudia201C*
Kenney, Scott237C
Kershisnik, Emma273C
Kerwin-Iosue, Christine L.87C
Kessler, Haeja A.195C
Khakhi, Svetlana325C
Khanna, Varun255C
Khaled, Shamsuddin148A, 438C *
Kievit, Robyn429C
Kim, Bomi400A
Kim, Dahee202A*
Kim, Eun Jung203B*
Kim, Ikjin439A*
Kim, Jane C.238A*
Kim, J. H.176B
Kim, Jinmi322A, 323B
Kim, Ji Yoon203B*
Kim, Myung Sup303C*
Kim, Young-Mo433A
King, Heather417C
Kingsbury, Joanne M.167B*
Kinkhabwala, Ali148A
Kintaka, R.204C*
Kirmayer, Daniel438C
Kishony, Roy55
Kitzman, Jacob64
Klar, Amar J. S.122B*
Klaus, Bernd299B
Klein, Sarah J.235A
Klippe, Edda179B
Knop, Michael148A*, 438C
Knowles, Gary237C
Kobor, Michael S.232A
Koch, Elizabeth39
Koch, Lori109A*
Kodevado, Marie215B
Kohler, Sepp D.2*
Kohni, Resenda237C
Kolehmainen, Kathleen L.149B*
Konstantinou, G.21
Korona, Ryszard350B, 351C

Koshland, Douglas227B
Koszul, Romain59
Kouatidis, Ilias428B
Krammer, Eva-Maria152B
Kraus, O.79A
Kraus, Oren378C
Krefman, Nathaniel384C
Krol, Kamal246C, 247A
Kruglyak, Leonid26
Krumlinde, Daniel326B
Kuang, Meihua Christina342C*
Kuang, Zheng313A
Kubec, Lauren N.417C
Kucerova, Helena83B
Kuehn, Raul368B
Kuehner, Jason N.239B *
Kuehls, Stephanie D.417C
Kuijpers, N. G.102C
Kumar, Abhay385A
Kumar, Anuj366C*
Kumar, Deepak304A*
Kumar, Sanjeev35*
Kunkel, Joseph160A
Kupiec, Martin245B
Kurischko, Cornelia286A*
Kuzmin, Elena57*
Kuznetsov, Evgeny83B*
Kvint, Kristian308B
Kwak, Grace392B

L
La Ferla, Marco398B
Lafon, Anne95B
Lai, Jefferson106A
Lal, Sneha193A, 205A*
Lam, Kenny309C
Lancaster, Samuel M.367A*
Landry, Benjamin4
Landry, Christian421A*, 431B*
Lang, Jackie224B*
Lang, Moritz214A
Lanzilotta, Cristina M.229A
Laprade, Lisa448A*
Larabe, Carolyn A.16
Larango, M.54
Larsen, Camilla E.395B*
Larsen, Camilla J.395B
Larsen, Anna171C
Lau, Rebecca178A
Laurent, Jon M.66
Laval, Guillaume358A
Law, Michael J.283A*
Laxman, Sunil84C*
Leach, Michelle168C*
Leach, Michelle D.183C
Lebo, K. J.264C
Leduced, Jean-Baptiste431B
Lee, Chien-Der45*
Lee, Jae Ho317B
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Lee, Jee Yeon, 400A
Lee, Ying Peng, 195C
Lee, Yuseon, 323B
Leinster, A., 21
Leitner, Erich, 325A
Leman, Adam R., 305B*
Lemon, Laramie, 263B*
Lemp, Peter, 181A
Leone, Sarah G., 341B
Leone, Sarah Grace, 306C*
Leskoske, Kristin, 169A*
Lev, Ifat, 457A*
Leverich, C., 442A
Levy, Julia, 424A
Levy, Sasha F., 420C
Lew, Daniel, 49
Lewellyn, Eric B., 384A
Lewis, Jeff, 375C
Lewis, Jefery A., 312C
Lewis, Jeffrey A., 441C
Li, Boyang, 159C
Lei, Hunter, 119B
Li, J., 396C*
Li, Sheena, 372C
Li, Sheena C., 397A*
Li, Shuang, 206B*
Li, Song, 451A
Li, Susan, 399C
Li, X., 443B
Li, Xiyan, 207C*
Li, Ying, 185B
Li, Yong, 14
Liachko, Ivan, 346A, 432C*
Libkind, Diego, 24, 349A
Ligoxygakis, Petros, 428B
Lin, Feng, 268A
Lin, Gen, 368B*
Lindahl, Lasse, 196A, 287B
Lindley, Harrison, 276C
Lindquist, Susan, 43, 60
Lindstrom, D., 138C
Linster, Carole L., 71B, 364A
Lipton, Mary S., 433A
Lisby, Michael, 379A
Lithgow, Gordon J., 150C
Li, Beidong, 326B
Li, Elizabeth M., 417C
Li, Jian, 295A
Li, Tzu-Ning, 281B
Li, Zhengchang, 307A*
Ljungdahl, Per, 172A
Ljungdahl, Per O., 170B*
Lloyd, Paul, 318C
Lo, Dara, 369C*
Lo, Russel, 357C
Lo, Yi-Chen, 281B
Lobanov, Alexei V., 365B
Lodovichi, Samuele, 398B*
Loewen, Christopher, 51, 191B
Loewith, R., 195C, 218B, 266B, 399C, 415A
Loewith, Robbie, 184A
López-Malo, María, 359B
Luo, J., 208A
Lubin, Johnathan W., 30*
Lubitz, Timo, 179B
Lucas, Candida, 190A
Luchniak, Anna, 50
Ludlow, Catherine, 370A*
Ludwig, K., 331A
Luke, Brian, 378C
Lundblad, Vicki, 30
Luo, Xiangxia, 160A
L M
Ma, L., 240C*
Ma, Lina, 266B
MacCoss, Michael, 112A
MacGilvray, Matthew, 7, 171C*
MacGurn, Jason, 157A
Machado, Cao M., 86B
MacQueen, A., 114C
Macreadie, Ian G., 405C
Magee, Alexander, 392B
Magwene, Paul, 343A
Magwene, Paul M., 347B
Mahrayer, Crystal, 453C
Mahatdejkul-Meadows, T., 106A
Maia de Oliveira, T., 21
Makanae, K., 204C
Malik, Harmit, 58, 430A
Malik, I., 302B
Mallick, Emily, 335B
Mandell, Dan, 447C
Mao, Cungui, 85A*
Mapa, Claudine, 4
Marcotte, Edward M., 66
Markowitz, Tovah, 119B
Marsh, E., 442A
Marshall, Sarah, 276C, 277A
Marston, Adele, 33*
Martens, Joseph, 310A
Martin, Elizabeth, 424A
Martin, Joel A., 375C
Martin-Pastor, M. Teresa, 373A
Martinuk, J., 458B*
Martins, Antonio, 172A*
Martins, Larissa S., 86B
Martin-Yken, Hélène, 295A
Maruva, Yosef E., 55
Masneuf-Pomarede, I, 429C
Maso, Rehan, 308B
Masuda, Claudio A., 86B*
Matevic, Mirela, 217A
Mathew, Veena, 248B
Mathew, V., 241A
May, Christopher K., 16
May, Patrick, 462C
May, Robin, 358A
Mayor, Thibault, 51, 218B, 266B
Mayorga, Maria, 448A
Mazanka, Emily M., 32*
McCleary, David, 284B*
McCleary, Allison, 49*
McCleure, Kelsi, 276C
McCroskey, Scott, 17
McEloy, Taylor, 277A*
McGoff, Kevin A., 305B
McMahon, Conor, 18
McManus, Charles, 324C
McMaster, Christopher, 68*
McMaster, C. R., 386B, 408C
McMurtry, M., 53*
McMurtry, Michael, 111C
McNabney, Sean, 458B
McQueen, Jennifer, 191B
McQueen, Jennifer A., 399C*
M. Dudley, Aimée, 462C
Meadows, Adam, 106A, 301A
Measday, V., 458B
Measday, Vivien, 191B, 266B*
Medina, D. A., 291C
Medina, Daniel A., 373A
Mefford, M. A., 264C
Mehra, Upasana, 137B*
Meinhardt, Friedhelm, 327C
Mejia, Matthew, 417C
Melamed, Daniel, 344B*
Mellor, Joseph, 38
Meluh, P. B., 208A*
Mena, A., 345C*
Mendelsohn, Bryce, 95B
Meneghini, Marc, 13, 116B
Menon, Anant K., 200B
Mercantati, Alberto, 398B
Merhi, A., 142A
Merhi, Ahmad, 152B
Merrill, Anna, 7
Meslin, Camille, 123C*
Metz, Thomas O., 433A
Meurer, Matthias, 438C
Meusburger, Madeleine, 184A
Miao, Yu-Hsuan, 139A
Michaelis, Vladimir K., 60
Michieli, Olivier, 436A
Michor, Franziska, 55
Milbury, K., 241A
Miles, Shawna, 6
Miller, Aaron W., 346A*
Miller, Christina, 344B, 439A
Miller, Matthew, 110B
54
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book. The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Milman, N, 240C
Minakova, Maria, 49
Mine-Hattah, Judith, 29
Minic, Zoran, 135C
Minikel, Samantha, 229A
Mink, Daniel, 325A
Miranda, M., 425B
Mirkin, Sergeï M., 238A
Mitchell, J. A, 54*
Mitchell, Jessica, 267C, 269B
Mitchell, Leslie, 381C
Mitsunaga, Erin, 374B
Mobley, James, 391A
Mori, Robyn D, 317B
Møller, Henrik D., 242B*
Mueller, Erica N., 233B, 250A
Mukai, Yukio, 209B*
Mirkin, Sergei M., 238A
Minikel, Samantha, 229A
Mitchell, J. A, 54*
Mitchell, Jessica, 267C, 269B
Mitchell, Leslie, 381C
Mitsunaga, Erin, 374B
Mobley, James, 391A
Mori, Robyn D, 317B
Møller, Henrik D., 242B*
Momeni, Babak, 461B
Monteleone, Nicholas, 229A
Montero-Lomeli, Mónica, 86B
Moore, Claire, 239B
Morales, Rita, 117C
Moreno Torres, Marta, 173B*
Moritz, Robert, 112A
Mortya, H, 204C
Morozov, Alexandre, 294C
Mosbach, Valentine, 255C
Mösch, Hans-Ulrich, 181A
Mösch, H.-U., 219C
Moses, Alan, 1, 57
Moshtagadi, Noshin, 69
Mueller, Erica N, 233B, 250A
Muir, Alexander, 174C*
Mukai, Yukio, 209B*
Muller, G, 103A
Muller, Heloise, 59*
Müller, Monika, 325A
Munson, Mary, 20*
Murasheige, S, 118A
Murphy, Alex, 273C*
Murphy, Erin, 50
Murphy, Helen A, 347B*
Murray, Debra, 347B
Murray, Marlene N, 400A*
Mutukrishnan, Nandhini, 309C
Muzi-Falconi, Marco, 378C
Muzzey, Dale, 26
Myers, Chad, 372C
Myers, Chad L, ... 39, 57, 397A, 426C
Myers, Kevin S, 422B*
N
NaghdiGheshlaghi, Zahra, 401B*
Nakayama, Yasumune, 209B
Nambar, M, 240C
Nambar, Nidula, 225C*
Narula, Ashrut, 13
Natanska, Urszula, 210C*
Navarathna, Dhamika, 302B
O
O'Donnell, Allyson, 123C, 131C*, 141C, 332B
O'Donnell, Allyson F, 146B
Oefferinger, Marlene, 416B
Oh, Yoomi, 88A*
Ohnuki, S, 362B
Ohnuki, Shinsuke, 42*, 89B
Ohtsu, Iwao, 100A
Ohy, Y, 362B
Ohy, Yoshikazu, 42, 89B, 105C
Ojini, Irene, 65
Okada, Hiroyuki, 89B*
Oke, Ashwini, 28
Olayanju, Mobolani, 402C*
Oldani, Amanda, 221B
Oling, David, 308B*
Oliver, Kathryn E, 394A
Omholt, SW, 331A
Omnus, Deike J, 170B
O'Neil, Nigel, 69
Ong, Giang, 25
Ong, Ta-chung, 60
Onishi, Masayuki, 90C*
Onn, Itay, 227B*
Ontoso, David, 11
Opoku, Kwaku, 33
Orgil, Ola, 227B
Orlando, Kelly A, 341B
Orr, Galya, 433A
Osada, Hirohiko, 372C
Oueszaz, Faissal, 263B
Oughtred, Rose, 409A
Outhaye, Malena, 277A
Outlaw, Darryl, 449B
P
Pachulska-Wieczorek, Katarzyna, 267C
Paghliuca, Cinzia, 221B
Paliwal, Swati, 348C*
Palkova, Zdena, 73A, 81C, 83B, 91A*, 104B, 328A
Pandey, Dharmendra, 132C
Park, Jae-Sook, 124A*
Parreira, Lucas, 349A
Parrou, J, 93C, 94A
Parsons, Lance, 242B
Pars, Leopold, 452B
Parvin, Jeffrey, 64
Pascoc, Natasha, 403A*
Pasion, S, G, 261C
Paskov, Kelley, 411C
Paskov, Kelley M, 459C*
Pathirana, Ruvin U, 92B*
Patil, Prashant, 195C
Patra, Biranchi N, 37, 404B*
Paton-Vogt, J, 133A
Paulissen, Scott, 125B*
Paulovich, Amanda, 437B
Paulson, Carsten, 133A
Paw, J, 362B
Peach, Sally, 290B*
Pecora, Mia, 424A
Pedeville, Deanna, 243C
Peel, Michael, 306C
Pelechano, Vicente, 299B
Péli-Gulli, Marie-Pierre, 173B
Pellman, David, 155
Penner, M, 133A
Perez-Ortin, J. E, 291C*
Pérez-Ortin, Jose E, 373A
Perez-Torrado, Roberto, 434B
Peria, W, 158B
Peris, David, 24
Peris Navarro, David, 349A*
Perlman, David, 8
Pesce, G, 158B
Peters, L, 143B
Peters, Theodore W, 150C*
Peterson, Timothy R, 191B
Petitjean, M, 93C*, 94A*
Petkova, Mima, 163A

55
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Speaker and Author Index
This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Scholes, Amanda N. 312C*
Sraffil, Andrea 421A
Schubert, Max 446B
Schuldtner, Maya 380B
Schultz, Eric 237C
Schurmann, Martin 325A
Schwartz, Katja 358A
Schwartz, S 302B
Schweizer, Lilian Marry 315C
Schweizer, Michael 315C
Scalfani, Robert A. 244A*
Scott, Adrian 450C*
Seip, J ... 199A
Seiser, Robert M. 96C, 464B*
Selmecki, Anna M. 55*
Sen, Neelam D. 167B
Seo, Youngdaeg 136A
Sere, Yves 200B
Sertour, Natacha 358A
Severson, Amber L 235A
SGD Project 387C
Shah, Ajit ... 193A, 205A
Shah, Kartik A 238A
Shah, Khyati 186C
Shah, Khyati H 5*
Shannugamathan, Karthik 175A
Shapira, R 460A*
Sharifpoor, Sara 197B
Sharma, Nimisha 304A
Shashkova, Sviatlana 179B*
Shemesh, Keren 245B*
Shen, Yi ... 326B
Shendure, Jay 64, 432C
Sherbina, Katrina 417C
Sherlock, Gavin 358A, 420C
Shi, J ... 440B*
Shi, Lei .. 84C
Shi, Qian .. 186C
Shimoi, Hitoshi 105C
Shin, John .. 399C
Shore, David 378C
Shores, Noam 55
Shou, Wenyong 337A, 461B*
Shrestha, Kriti 221B
Shteyman, Alan 324C
Sia, Ree Y .. 243C
Sides, Rebecca E 441C*
Sidhu, Sachdev 403A
Siegal, Mark 206B
Siegal, Mark L 23
Sieverman, Kathryn 10
Sieverman, Katie 279C*
Simpkins, Scott 372C, 397A
Simpson-Lavy, Kobi 101B*
Simpson-Lavy, Kobi J 153C
Sing, Tina 378C
Sing, T L ... 362B
Singh, Badri Nath 15
Sinha, Himanshu 361A
Sirotkin, Vladimir 134B
Sirt, Amy ... 370A, 462C
Sirt, Amy Carol 127A*
Sison, E S .. 261C
Sitko, Katherine A 389B
Skibbens, Robert V 230B*
Skoneczna, Adriana 246C*, 247A*
Skonetzny, Marek 210C
Skotheim, Jan M. 3
Skupin, Alexander 364A
Slaughter, Brian 17, 63
Sliva, Anna 313A*
Slubowski, Christian 125B
Smith, Daniel 453C
Smith, Daniel L 217A
Smith, Elizabeth A 16
Smith, Gerald R 225C, 253A
Smith, Gerry 58, 430A
Smith, Gerry R 240C, 252C
Smith, J .. 425B
Smith, Jean 128B*
Smith, Jeffrey S 217A
Smith, Jennifer J 451A*
Smith, Jeremy 161B
Smith, Justin D 452B*
Smith, Keston 117C
Smith, Michael J 29*
Smoier, Christine 63
Smoier, Christine J 17*
Smyth, Jason 347B
Snowdon, Chris 180C
Snyder, M .. 443B
Snyder, Michael 207C, 374B, 435C
Solis-Escalante, D 102C*
Soloveychik, Maria 13*
Song, Qingxuan 366C
Sorensen, Laura G R 379A*
Sorensen, Amber 55
Sorscher, Eric J 394A
Souza-Moreira, T M 407B*
Speelman, Pieter J 324C*
Sporer, Abigail J 129C*
Srinivas, N 331A
Stagljar, Igor 177C
Stambuk, B U 103A*
Starita, Lea 64*
Stark, Michal 121A
Stefan, Christopher 157A
Stefan, Eduard 421A
Steffes, Jenna 250A
Steidle, Elizabeth 213C
Stein, Richard 128B
Steiner, Walter 256A*
Steinmetz, Lars 299B, 368B
Stelling, Joerg 214A
Stephany, Jason J 388A
Sternglanz, Rolf 120C
Steunou, Anne-Lise 421A
Stevens, David 435C
Stilwell, Jessica 414C
Stirling, P .. 241A
Stirling, Peter C 231C, 248B*
Stisher, Chandler 449B
Stoliartchouk, Alexei 413B, 465C
St. Onge, Robert 418A
St. Onge, Robert P 425B
St. Onge, R P 425B
Stovicek, Vratislav 81C,
.. 104B, 328A
Stribny, Jiri 434B*
Strich, Randy S 36*
Strynakta, Katherine A 408C*
Stuecker, Tara N 312C
Stultz, Laura 391A, 463A
Stumpf, Michael 419B
Styles, Erin B 378C*
Su, Xiaofeng 249C*
Subramaniam, Viji 119B
Sun, Song .. 409A*
Sun, Xiaojib 410B*
Sun, Xupepeng 314B*
Sundarman, Venkatraghavan 163A
Sung, Shen-Shu 393C
Sunjevaric, Ivana 406A
Sunnerhagen, P 331A
Sunnerhagen, Per 326B
Sunshine, Anna 25
Sunshine, Anna B 346A
Suress, S ... 425B
Suress, Sundari 418A, 452B
Sutter, Benjamin 84C
Syehrova, Hana 215B*
Syehrová, Hana 190A
Sylvester, Kayla 24, 349A

T
Tackett, Jessalyn 276C
Tagaki, Julie 52
Tai, Anna .. 106A
Takagi, Hiroshi 100A, 105C
Talevich, E 54
Tamada, Yoshihiro 209B
Tan, Guihong 38, 409A
Tan, Kaiquan 74B
Tan, Zhihao 297C, 462C*
Tang, Alvin 309C
Tao, Luan .. 329B
Tatchell, K 97A
Tate, J J ... 298A
Taylor, Lea 103A*
Taylor, Matthew 22
Tekkedil, Manu 368B
Teste, MA 93C, 94A
Teytelman, Lenny 413B*, 465C*
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book. The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

Thayer, NH, 138C*, 442A*
Teesfeld, Chandra, 409A
Thore, S, 21
Thomor, Jeremy, 52, 141C, 169A, 174C, 178A
Thorpe, Peter, 222C
Thurtle, Deborah, 275B
Tien, Jerry, 108C, 110B
Timmons, Garrett, 174C
Tinberg, Christine, 447C
Toczyski, David Paul, 40*
Tong, Kevin, 230B
Tong, Jeffery, 145A
Tokuda, S., 118A
Torres, Nikko P., 41*
Torres-Machorro, Ana Lilia, 280A
Torres-Quiroz, Francisco, 421A
Tou, Benjamin, 106A
Tsai, Chai-jui, 147C
Tsegaye, Yoseph, 106A
Umbreit, Neil, 110B*
Umbreit, Neil T., 32
Uml, Elcin, 113B
Umland, Jay, 130A
Uras, Matej, 39, 57, 371B, 426C*
Usher, J., 363C
Usher, Jane, 428B

V
Vachtova, Libuse, 73A
Vadai, Nadia, 157A
Vainorius, Gintautas, 214A
Valentini, Sandro R., 197B
Valentini, S. R., 407B
Vallabhaheni, Arjuna Rao, 316A*
Valkokuru, Veena, 217A
van Dalfsen, Kelsey, 131B
van der Felden, Julia, 181A
Vanderhoof, Jordan, 392B
van der Merwe, George, 180C*
VanderSuis, Benjamin, 39*, 57
van Leeuwen, Fred, 11*
van Leeuwen, Jolanda, 38*, 401B
van Peters, Derek, 69
van Welsem, Tibor, 11
Varella, Cristian, 454A
Vashistha, Nidhi, 154A*
Vax, A, 94A
Vega, Alondra J, 417C
Veia, Yash, 137B
Vidal, Marc, 409A
Viitanen, Paul, 329B
Vincenten, Nadine, 33
Vissam, Myriam, 2
Viterbo, David, 255C
Vizeacoumar, FS, 138C
Vlamming, Hanneke, 11
Vlasblom, James, 135C
Voelz, Kerstin, 358A
Volpe, Marina, 194B, 457A
Vuillemin, Marlene, 295A
Vvedenskaya, I., 302B
W
Wachsmuth, L., 54
Waddington, Lynne J, 405C
Wakefield, Jon, 47
Walker, Daisy, 213C
Walker, Jennifer, 332B
Walters, Alison, 115A
Walters, Alison D., 16*
Walther, Andrea, 354C
Walther, Andre P., 235A
Wan, Yao, 46, 288C*
Wang, Chao-Wen, 139A
Wang, H., 292A*
Wang, Meng, 90C
Wang, Wei, 14
Wang, Wen, 39
Wang, Zhe, 314B
Wang, Zhishi, 360C
Wanka, Stefanie, 9
Warringer, J., 291C, 331A
Watanahe, Daisuke, 100A, 105C*
Wall, Kristofer, 95B
Weems, A, 53
Weems, Andrew, 111C*
Wei, Karen, 416B
Wei, Siwei, 433A
Weil, Dylan S., 195C
Weil, Uri, 380B
Weinberg, Abigail P., 336C
Weinert, Corey, 437B
Weiss, E, 76A
Weiss, Eric, 1*
Weiss, Eric L., 72C
Weisser, Sarah, 181A*
Weissman, Jonathan S., 216C*
Welch, Aaron, 216C*
Welkenhuysen, Niek, 179B, 182B*
Wellington, Melanie, 270C
Wendland, Beverly, 141C
Wendland, Jürgen, 210C
Wendland, Jürgen W., 354C*
Wensel, Jocelyn, 404B
Westfall, Patrick, 106A

Wong, Catherine C., 384C
Wong, Edith, 318C*
Wong, L. H., 410B
Wozniak, N., 219C
Wriessenegger, Tamara, 325A
Wright, Jill N., 414C*
Wu, Jingyan, 46*, 288C
Wu, Kati, 106A*
Wu, Wei-Hua, 14*
Wykoff, Dennis, 87C, 306C
Wykoff, Dennis D., 319A*, 341B

X
Xie, Jinglin L., 183C*
Xu, Lan, 106A
Xu, Mengshu, 13
Xu, Ruijuan, 85A
Xu, Y., 78C

Y
Yam, Phoebe, 28
Yamaguchi, Takafuli, 38
Yang, Fan, 409A
Yang, G. X., 443B*
Yang, Jianjun, 329B
Yang, Kun, 273C
Yang, Xiaoxue, 326B
Yashpal, FNU, 320B*
Yates 3rd, John R., 384C
Ye, Qiaozhen, 33
Ye, Rick, 329B
Ye, Tian, 182B
Yeh, Brian, 1
Yellman, Christopher, 66
Yeong, Foong May, 70A, 74B,
Yeilikaya, Seda, 184A*
Yi, Jae Kyo, 85A
Yi, Song, 409A
Yofe, Id, 380B*
Yogo, O., 143B
Yong, Chris, 360C
Yong, Mun Hong, 330C
Speaker and Author Index

This index includes names in alphabetical order of all invited authors, and co-authors published in this book.

The number following a name refers to the abstract’s program number. An asterisk denotes a presenting author.

Platform Presentations: 1-69, Poster Presentations 70A-465C.

<table>
<thead>
<tr>
<th>Name</th>
<th>Program Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>York, Kerri</td>
<td>260B, 290B</td>
</tr>
<tr>
<td>Yoshida, Minoru</td>
<td>372C, 397A</td>
</tr>
<tr>
<td>Yoshinaga, A.</td>
<td>133A</td>
</tr>
<tr>
<td>Young, Alexandria</td>
<td>12</td>
</tr>
<tr>
<td>Young, Barry</td>
<td>266B, 415A*</td>
</tr>
<tr>
<td>Young, Barry P.</td>
<td>51, 218B</td>
</tr>
<tr>
<td>Young, David</td>
<td>344B</td>
</tr>
<tr>
<td>Yu, Analyn</td>
<td>409A</td>
</tr>
<tr>
<td>Yu, Haiyuan</td>
<td>427A*</td>
</tr>
<tr>
<td>Yu, Jonathan</td>
<td>58</td>
</tr>
<tr>
<td>Yuan, Wenjie</td>
<td>165C</td>
</tr>
</tbody>
</table>

Z

<table>
<thead>
<tr>
<th>Name</th>
<th>Program Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahner, Christopher</td>
<td>414C</td>
</tr>
<tr>
<td>Zakrzewski, Bethany</td>
<td>256A</td>
</tr>
<tr>
<td>Zamir, Lyad</td>
<td>259A</td>
</tr>
<tr>
<td>Zamparo, Lee</td>
<td>378C</td>
</tr>
<tr>
<td>Zanders, Sarah</td>
<td>430A</td>
</tr>
<tr>
<td>Zanders, Sarah E.</td>
<td>58*</td>
</tr>
<tr>
<td>Zanelli, C. F.</td>
<td>407B</td>
</tr>
<tr>
<td>Zanelli, Cleslei F.</td>
<td>197B</td>
</tr>
<tr>
<td>Zanotelli, Vito</td>
<td>8</td>
</tr>
<tr>
<td>Zappulla, D. C.</td>
<td>264C*</td>
</tr>
<tr>
<td>Zaslaver, Olga</td>
<td>62, 107B*</td>
</tr>
<tr>
<td>Zellner, Guenther</td>
<td>325A</td>
</tr>
<tr>
<td>Zelter, Alex</td>
<td>32, 108C, 112A*</td>
</tr>
<tr>
<td>Zeppelin, Ryan</td>
<td>429C</td>
</tr>
<tr>
<td>Zeyl, Cliff W.</td>
<td>347B</td>
</tr>
<tr>
<td>Zhang, A.</td>
<td>185B*</td>
</tr>
<tr>
<td>Zhang, Bo</td>
<td>186C*</td>
</tr>
<tr>
<td>Zhang, Li</td>
<td>193A, 205A</td>
</tr>
<tr>
<td>Zhang, Ruoyu</td>
<td>355A*</td>
</tr>
<tr>
<td>Zhang, Ying</td>
<td>62</td>
</tr>
<tr>
<td>Zhang, Zhaolei</td>
<td>135C, 378C</td>
</tr>
<tr>
<td>Zhao, Karen L.</td>
<td>188B</td>
</tr>
<tr>
<td>Zhao, Wei</td>
<td>25</td>
</tr>
<tr>
<td>Zheng, Mei-Yi</td>
<td>140B*, 336C</td>
</tr>
<tr>
<td>Zheng, Wei</td>
<td>374B</td>
</tr>
<tr>
<td>Zhou, Yan</td>
<td>105C</td>
</tr>
<tr>
<td>Zhu, Q</td>
<td>199A</td>
</tr>
<tr>
<td>Zieler, Helge</td>
<td>37*</td>
</tr>
<tr>
<td>Zitnik, Marinka</td>
<td>371B</td>
</tr>
<tr>
<td>Zoet, Vincent</td>
<td>436A</td>
</tr>
<tr>
<td>Zupan, Blaz</td>
<td>371B</td>
</tr>
<tr>
<td>Zweifel, Stephan</td>
<td>257B*</td>
</tr>
</tbody>
</table>
Yeast Database Genetic Index to Abstracts

This is an index of genes mentioned in the abstracts. The current Yeast Database approved gene symbol is given in each case; non-current symbol synonyms or full names used in the abstracts are not indexed.

The index was prepared computationally based solely on the YBgn & gene symbol information provided by authors during abstract submission. GSA is not responsible for any incorrect indexing where genes stated to feature in an abstract do not actually appear. Numbers following each term refer to abstract program numbers: 1–69 are platform presentations and 70–465 are poster presentations.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC1</td>
<td>402C</td>
</tr>
<tr>
<td>Acc1</td>
<td>115A</td>
</tr>
<tr>
<td>AAC3</td>
<td>187A</td>
</tr>
<tr>
<td>Act1</td>
<td>202A</td>
</tr>
<tr>
<td>ade1</td>
<td>217A</td>
</tr>
<tr>
<td>ade4</td>
<td>217A</td>
</tr>
<tr>
<td>ade6</td>
<td>256A</td>
</tr>
<tr>
<td>ade8</td>
<td>107B</td>
</tr>
<tr>
<td>ade10</td>
<td>434B</td>
</tr>
<tr>
<td>ARF1</td>
<td>189C</td>
</tr>
<tr>
<td>aro10</td>
<td>434B</td>
</tr>
<tr>
<td>ART1</td>
<td>152B</td>
</tr>
<tr>
<td>ASI1</td>
<td>170B</td>
</tr>
<tr>
<td>ASI2</td>
<td>170B</td>
</tr>
<tr>
<td>ASI3</td>
<td>170B</td>
</tr>
<tr>
<td>atf1</td>
<td>256A, 434B</td>
</tr>
<tr>
<td>ATF1</td>
<td>448A</td>
</tr>
<tr>
<td>atf2</td>
<td>434B</td>
</tr>
<tr>
<td>ATG</td>
<td>139A</td>
</tr>
<tr>
<td>ATH1</td>
<td>78C</td>
</tr>
<tr>
<td>atp1</td>
<td>107B</td>
</tr>
<tr>
<td>AVO1</td>
<td>21</td>
</tr>
<tr>
<td>AVO2</td>
<td>21</td>
</tr>
<tr>
<td>AVO3</td>
<td>21</td>
</tr>
<tr>
<td>BARD1</td>
<td>64</td>
</tr>
<tr>
<td>bcy1</td>
<td>443B</td>
</tr>
<tr>
<td>bdf1</td>
<td>424A</td>
</tr>
<tr>
<td>Bdp1</td>
<td>317B</td>
</tr>
<tr>
<td>BEM1</td>
<td>96C</td>
</tr>
<tr>
<td>Bem4</td>
<td>161B</td>
</tr>
<tr>
<td>bim1</td>
<td>158B</td>
</tr>
<tr>
<td>BIT2</td>
<td>21</td>
</tr>
<tr>
<td>BIT81</td>
<td>21</td>
</tr>
<tr>
<td>Btl1</td>
<td>145A</td>
</tr>
<tr>
<td>Bsl1</td>
<td>145A</td>
</tr>
<tr>
<td>BMH1</td>
<td>166A</td>
</tr>
<tr>
<td>BNI4</td>
<td>82A</td>
</tr>
<tr>
<td>Bni5</td>
<td>52</td>
</tr>
<tr>
<td>BRC1</td>
<td>64</td>
</tr>
<tr>
<td>BRE1</td>
<td>11</td>
</tr>
<tr>
<td>BRE2</td>
<td>1</td>
</tr>
<tr>
<td>CAC1</td>
<td>220A</td>
</tr>
<tr>
<td>CAC2</td>
<td>72, 286A</td>
</tr>
<tr>
<td>CAC3</td>
<td>1</td>
</tr>
<tr>
<td>CAC4</td>
<td>257B</td>
</tr>
<tr>
<td>CAC5</td>
<td>111C</td>
</tr>
<tr>
<td>CDC1</td>
<td>52</td>
</tr>
<tr>
<td>CDC2</td>
<td>53</td>
</tr>
<tr>
<td>CDC3</td>
<td>111C</td>
</tr>
<tr>
<td>CDC4</td>
<td>7</td>
</tr>
<tr>
<td>CDC5</td>
<td>70A</td>
</tr>
<tr>
<td>CDC6</td>
<td>261C</td>
</tr>
<tr>
<td>CDC7</td>
<td>161B</td>
</tr>
<tr>
<td>CDC8</td>
<td>4, 82A</td>
</tr>
<tr>
<td>CDC9</td>
<td>111C</td>
</tr>
<tr>
<td>CDC10</td>
<td>53</td>
</tr>
<tr>
<td>CDC11</td>
<td>53</td>
</tr>
<tr>
<td>CDC12</td>
<td>53</td>
</tr>
<tr>
<td>CDC13</td>
<td>264C</td>
</tr>
<tr>
<td>CDC14</td>
<td>7</td>
</tr>
<tr>
<td>CDC15</td>
<td>273C</td>
</tr>
<tr>
<td>CDC16</td>
<td>70A</td>
</tr>
<tr>
<td>CDC17</td>
<td>261C</td>
</tr>
<tr>
<td>CDC18</td>
<td>161B</td>
</tr>
<tr>
<td>CDC19</td>
<td>3, 4, 82A</td>
</tr>
<tr>
<td>CDC20</td>
<td>53</td>
</tr>
<tr>
<td>CDC21</td>
<td>52</td>
</tr>
<tr>
<td>CDC22</td>
<td>389B</td>
</tr>
<tr>
<td>CDC23</td>
<td>49, 96C</td>
</tr>
<tr>
<td>CDC24</td>
<td>161B</td>
</tr>
<tr>
<td>CDC25</td>
<td>144C</td>
</tr>
<tr>
<td>CDC26</td>
<td>16, 406A</td>
</tr>
<tr>
<td>CDC27</td>
<td>293B</td>
</tr>
<tr>
<td>CDC28</td>
<td>244A</td>
</tr>
<tr>
<td>CDC29</td>
<td>261C</td>
</tr>
<tr>
<td>CDC30</td>
<td>164B</td>
</tr>
<tr>
<td>CDC31</td>
<td>230B</td>
</tr>
<tr>
<td>CDC32</td>
<td>89B</td>
</tr>
<tr>
<td>CDC33</td>
<td>74B</td>
</tr>
<tr>
<td>CDC34</td>
<td>194B</td>
</tr>
<tr>
<td>CDC35</td>
<td>417C</td>
</tr>
<tr>
<td>CDC36</td>
<td>70A</td>
</tr>
<tr>
<td>CK2</td>
<td>303C</td>
</tr>
<tr>
<td>Cka2</td>
<td>1</td>
</tr>
<tr>
<td>CKS1</td>
<td>406A</td>
</tr>
<tr>
<td>CLB2</td>
<td>82A</td>
</tr>
<tr>
<td>CLB3</td>
<td>113B</td>
</tr>
<tr>
<td>CLN1</td>
<td>323B</td>
</tr>
<tr>
<td>Cln1</td>
<td>331A</td>
</tr>
<tr>
<td>Cln2</td>
<td>3</td>
</tr>
<tr>
<td>Cln3</td>
<td>6</td>
</tr>
<tr>
<td>Cme2</td>
<td>144C</td>
</tr>
<tr>
<td>cma1</td>
<td>144C</td>
</tr>
<tr>
<td>CN1</td>
<td>164B</td>
</tr>
<tr>
<td>Cna1</td>
<td>164B</td>
</tr>
<tr>
<td>Cna2</td>
<td>145A</td>
</tr>
<tr>
<td>CNN1</td>
<td>224B</td>
</tr>
<tr>
<td>Cof1</td>
<td>273C</td>
</tr>
<tr>
<td>COM2</td>
<td>121A</td>
</tr>
<tr>
<td>cox18</td>
<td>107B</td>
</tr>
<tr>
<td>cox9</td>
<td>107B</td>
</tr>
<tr>
<td>CSE4</td>
<td>31, 223A, 271A</td>
</tr>
<tr>
<td>ese4</td>
<td>222C</td>
</tr>
<tr>
<td>csk1</td>
<td>319A</td>
</tr>
<tr>
<td>Cta1</td>
<td>202A</td>
</tr>
<tr>
<td>etf19</td>
<td>457A</td>
</tr>
<tr>
<td>CTF4</td>
<td>383B</td>
</tr>
<tr>
<td>CTF7/ECO1</td>
<td>230B</td>
</tr>
<tr>
<td>etp1</td>
<td>240C</td>
</tr>
<tr>
<td>CTS1</td>
<td>72C</td>
</tr>
<tr>
<td>Ctt1</td>
<td>202A</td>
</tr>
<tr>
<td>CUP1</td>
<td>295A</td>
</tr>
<tr>
<td>CUP1-1</td>
<td>242B</td>
</tr>
<tr>
<td>CUP1-2</td>
<td>242B</td>
</tr>
<tr>
<td>CYC8</td>
<td>307A</td>
</tr>
<tr>
<td>Cye3</td>
<td>90C</td>
</tr>
<tr>
<td>DAM1</td>
<td>110B, 112A</td>
</tr>
<tr>
<td>dam1</td>
<td>457A</td>
</tr>
<tr>
<td>DBF4</td>
<td>244A</td>
</tr>
<tr>
<td>DHH1</td>
<td>323B</td>
</tr>
<tr>
<td>DIT1</td>
<td>462C</td>
</tr>
<tr>
<td>dit3</td>
<td>241A</td>
</tr>
<tr>
<td>dlh2</td>
<td>107B</td>
</tr>
<tr>
<td>DMC1</td>
<td>119B</td>
</tr>
<tr>
<td>DNF1</td>
<td>178A</td>
</tr>
<tr>
<td>DNF2</td>
<td>178A</td>
</tr>
<tr>
<td>DNF3</td>
<td>178A</td>
</tr>
<tr>
<td>DNM1</td>
<td>36, 243C</td>
</tr>
<tr>
<td>DOA10/SSM4</td>
<td>151A</td>
</tr>
<tr>
<td>DON1</td>
<td>125B</td>
</tr>
<tr>
<td>Yeast Database Genetic Index to Abstracts</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>DOT1 11, 232A</td>
<td></td>
</tr>
<tr>
<td>Dot6 160A</td>
<td></td>
</tr>
<tr>
<td>DRS2 178A</td>
<td></td>
</tr>
<tr>
<td>DSN1 224B</td>
<td></td>
</tr>
<tr>
<td>DSN2 224B</td>
<td></td>
</tr>
<tr>
<td>DUN1 305B</td>
<td></td>
</tr>
<tr>
<td>dsn1 222C</td>
<td></td>
</tr>
<tr>
<td>DSN1 224B</td>
<td></td>
</tr>
<tr>
<td>DSN2 224B</td>
<td></td>
</tr>
<tr>
<td>DUN1 305B</td>
<td></td>
</tr>
<tr>
<td>EAP1 323B</td>
<td></td>
</tr>
<tr>
<td>Ecm21 146B</td>
<td></td>
</tr>
<tr>
<td>ECM3 319A</td>
<td></td>
</tr>
<tr>
<td>EDC3 286A, 322A</td>
<td></td>
</tr>
<tr>
<td>ELG1 245B</td>
<td></td>
</tr>
<tr>
<td>eMe1 253A</td>
<td></td>
</tr>
<tr>
<td>ENA1 242B</td>
<td></td>
</tr>
<tr>
<td>ENA2 242B</td>
<td></td>
</tr>
<tr>
<td>ENA5 242B</td>
<td></td>
</tr>
<tr>
<td>END3 22</td>
<td></td>
</tr>
<tr>
<td>EPL1 280A</td>
<td></td>
</tr>
<tr>
<td>epl1 51, 218B</td>
<td></td>
</tr>
<tr>
<td>erd2 19, 389B</td>
<td></td>
</tr>
<tr>
<td>ERG12 80B</td>
<td></td>
</tr>
<tr>
<td>ERG2 215B</td>
<td></td>
</tr>
<tr>
<td>ERG24 215B</td>
<td></td>
</tr>
<tr>
<td>ERG3 215B</td>
<td></td>
</tr>
<tr>
<td>ERG4 215B</td>
<td></td>
</tr>
<tr>
<td>ERG5 215B</td>
<td></td>
</tr>
<tr>
<td>ERG6 215B</td>
<td></td>
</tr>
<tr>
<td>ESA1 280A</td>
<td></td>
</tr>
<tr>
<td>Esp1 266B</td>
<td></td>
</tr>
<tr>
<td>EST1 30, 263B</td>
<td></td>
</tr>
<tr>
<td>EST1 264C</td>
<td></td>
</tr>
<tr>
<td>EST2 30, 263B, 264C</td>
<td></td>
</tr>
<tr>
<td>EST3 30</td>
<td></td>
</tr>
<tr>
<td>far1 3</td>
<td></td>
</tr>
<tr>
<td>fas1 115A</td>
<td></td>
</tr>
<tr>
<td>fas2 115A</td>
<td></td>
</tr>
<tr>
<td>FBA1 276C</td>
<td></td>
</tr>
<tr>
<td>FBP1 236B</td>
<td></td>
</tr>
<tr>
<td>FBP1 392B</td>
<td></td>
</tr>
<tr>
<td>fbp1 392B</td>
<td></td>
</tr>
<tr>
<td>fks1 392B</td>
<td></td>
</tr>
<tr>
<td>FLO1 19C</td>
<td></td>
</tr>
<tr>
<td>FLO10 219C</td>
<td></td>
</tr>
<tr>
<td>flo1 379A</td>
<td></td>
</tr>
<tr>
<td>flo1 379A</td>
<td></td>
</tr>
<tr>
<td>FLO11 44, 48, 104B, 219C, 283A</td>
<td></td>
</tr>
<tr>
<td>FLO5 219C</td>
<td></td>
</tr>
<tr>
<td>flo8 219C</td>
<td></td>
</tr>
<tr>
<td>FLO8 379A</td>
<td></td>
</tr>
<tr>
<td>flo9 219C</td>
<td></td>
</tr>
<tr>
<td>fms1 92B</td>
<td></td>
</tr>
<tr>
<td>FPR1 178A</td>
<td></td>
</tr>
<tr>
<td>fus1 313A</td>
<td></td>
</tr>
<tr>
<td>Fus1 128B</td>
<td></td>
</tr>
<tr>
<td>Fus2 128B</td>
<td></td>
</tr>
<tr>
<td>Fus3 48, 121A, 123C</td>
<td></td>
</tr>
<tr>
<td>fus3 3</td>
<td></td>
</tr>
<tr>
<td>fyv6 217A</td>
<td></td>
</tr>
<tr>
<td>gal1 86B</td>
<td></td>
</tr>
<tr>
<td>GAL11 293B</td>
<td></td>
</tr>
<tr>
<td>GAL3 342C</td>
<td></td>
</tr>
<tr>
<td>gal4 447C</td>
<td></td>
</tr>
<tr>
<td>gal7 86B</td>
<td></td>
</tr>
<tr>
<td>GAL80 342C</td>
<td></td>
</tr>
<tr>
<td>gap1 142A, 152B, 242B</td>
<td></td>
</tr>
<tr>
<td>GATI 298A</td>
<td></td>
</tr>
<tr>
<td>GCN2 165C</td>
<td></td>
</tr>
<tr>
<td>gcen4 285C</td>
<td></td>
</tr>
<tr>
<td>GCN4 320B</td>
<td></td>
</tr>
<tr>
<td>GCN5 95B, 159C</td>
<td></td>
</tr>
<tr>
<td>GEa1 96C</td>
<td></td>
</tr>
<tr>
<td>Gea2 96C</td>
<td></td>
</tr>
<tr>
<td>gem3 53</td>
<td></td>
</tr>
<tr>
<td>GIS1 193A, 293B</td>
<td></td>
</tr>
<tr>
<td>Glc7 97A, 144C</td>
<td></td>
</tr>
<tr>
<td>gle7 179B, 184A</td>
<td></td>
</tr>
<tr>
<td>Glg2 105C</td>
<td></td>
</tr>
<tr>
<td>Glk1 182B</td>
<td></td>
</tr>
<tr>
<td>glh3 157A</td>
<td></td>
</tr>
<tr>
<td>GLN3 417C</td>
<td></td>
</tr>
<tr>
<td>Grl1 202A</td>
<td></td>
</tr>
<tr>
<td>Gpa2 323B</td>
<td></td>
</tr>
<tr>
<td>Gpd1 419B</td>
<td></td>
</tr>
<tr>
<td>Gpd2 419B</td>
<td></td>
</tr>
<tr>
<td>GPR1 207C</td>
<td></td>
</tr>
<tr>
<td>Gpx3 202A</td>
<td></td>
</tr>
<tr>
<td>Grr1 27</td>
<td></td>
</tr>
<tr>
<td>Gsh1 202A</td>
<td></td>
</tr>
<tr>
<td>Gsh2 202A</td>
<td></td>
</tr>
<tr>
<td>gt2 ... 101B</td>
<td></td>
</tr>
<tr>
<td>Gtr1 84C</td>
<td></td>
</tr>
<tr>
<td>GTR1 167B</td>
<td></td>
</tr>
<tr>
<td>GTR2 167B</td>
<td></td>
</tr>
<tr>
<td>guk1 389B</td>
<td></td>
</tr>
<tr>
<td>Gy1 ... 74B</td>
<td></td>
</tr>
<tr>
<td>Gyp5 74B</td>
<td></td>
</tr>
<tr>
<td>hac1 86B</td>
<td></td>
</tr>
<tr>
<td>HAC1 290B</td>
<td></td>
</tr>
<tr>
<td>hap4 355A</td>
<td></td>
</tr>
<tr>
<td>hap4 307A</td>
<td></td>
</tr>
<tr>
<td>HCM1 4</td>
<td></td>
</tr>
<tr>
<td>HEK2 462C</td>
<td></td>
</tr>
<tr>
<td>hem25 386B</td>
<td></td>
</tr>
<tr>
<td>HeF1 279C</td>
<td></td>
</tr>
<tr>
<td>HTF2 276C, 277A</td>
<td></td>
</tr>
<tr>
<td>HMLALPHA2 279C</td>
<td></td>
</tr>
<tr>
<td>HMO1 417C</td>
<td></td>
</tr>
<tr>
<td>ho .. 118A, 293C</td>
<td></td>
</tr>
<tr>
<td>HO .. 90C</td>
<td></td>
</tr>
<tr>
<td>Hog1 7</td>
<td></td>
</tr>
<tr>
<td>HOG1 121A, 156C</td>
<td></td>
</tr>
<tr>
<td>HOM3 320B</td>
<td></td>
</tr>
<tr>
<td>HOM6 320B</td>
<td></td>
</tr>
<tr>
<td>HOP1 119B</td>
<td></td>
</tr>
<tr>
<td>hpr1 362B, 424A</td>
<td></td>
</tr>
<tr>
<td>Hrd1 154A</td>
<td></td>
</tr>
<tr>
<td>HRD1 151A</td>
<td></td>
</tr>
<tr>
<td>Hrd3 154A</td>
<td></td>
</tr>
<tr>
<td>hrr25 186C</td>
<td></td>
</tr>
<tr>
<td>hsfl 168C</td>
<td></td>
</tr>
<tr>
<td>HSF1 105C, 391A</td>
<td></td>
</tr>
<tr>
<td>HSH155 248B</td>
<td></td>
</tr>
<tr>
<td>HSK3 110B</td>
<td></td>
</tr>
<tr>
<td>hsp104 201C</td>
<td></td>
</tr>
<tr>
<td>HSP104 43, 53, 296B</td>
<td></td>
</tr>
<tr>
<td>Hsp26 442A</td>
<td></td>
</tr>
<tr>
<td>Hsp31 147C</td>
<td></td>
</tr>
<tr>
<td>HSP31 210C</td>
<td></td>
</tr>
<tr>
<td>HSP82 43, 296B</td>
<td></td>
</tr>
<tr>
<td>HTA1 232A</td>
<td></td>
</tr>
<tr>
<td>HTA2 232A, 242B</td>
<td></td>
</tr>
<tr>
<td>HTB1 95B</td>
<td></td>
</tr>
<tr>
<td>HTB2 170B, 242B</td>
<td></td>
</tr>
<tr>
<td>HZI ... 223A</td>
<td></td>
</tr>
<tr>
<td>Hxk1 182B</td>
<td></td>
</tr>
<tr>
<td>Hxk2 182B</td>
<td></td>
</tr>
<tr>
<td>HXT1 345C</td>
<td></td>
</tr>
<tr>
<td>HXT2 345C</td>
<td></td>
</tr>
<tr>
<td>HXT3 345C</td>
<td></td>
</tr>
<tr>
<td>HXT4 345C</td>
<td></td>
</tr>
<tr>
<td>HXT5 345C</td>
<td></td>
</tr>
<tr>
<td>HXT6 242B, 345C</td>
<td></td>
</tr>
<tr>
<td>HXT7 242B, 345C</td>
<td></td>
</tr>
<tr>
<td>hym1 76A</td>
<td></td>
</tr>
<tr>
<td>idp1 107B</td>
<td></td>
</tr>
<tr>
<td>idp2 282C</td>
<td></td>
</tr>
<tr>
<td>idp2 107B</td>
<td></td>
</tr>
<tr>
<td>IFH1 303C</td>
<td></td>
</tr>
<tr>
<td>IME1 117C, 121A, 129C</td>
<td></td>
</tr>
<tr>
<td>IME2 117C, 129C</td>
<td></td>
</tr>
<tr>
<td>IME4 129C</td>
<td></td>
</tr>
<tr>
<td>IML1 90C</td>
<td></td>
</tr>
<tr>
<td>Impl 84C</td>
<td></td>
</tr>
<tr>
<td>INN1 90C</td>
<td></td>
</tr>
<tr>
<td>INP1 35</td>
<td></td>
</tr>
<tr>
<td>INP2 35</td>
<td></td>
</tr>
<tr>
<td>inp53 164B</td>
<td></td>
</tr>
<tr>
<td>IPL1 97A, 113B</td>
<td></td>
</tr>
<tr>
<td>IQG1 90C</td>
<td></td>
</tr>
<tr>
<td>IRA2 22</td>
<td></td>
</tr>
<tr>
<td>IRE1 156C</td>
<td></td>
</tr>
<tr>
<td>irel 86B</td>
<td></td>
</tr>
<tr>
<td>IRR1 227B</td>
<td></td>
</tr>
<tr>
<td>ist2 218B</td>
<td></td>
</tr>
<tr>
<td>JHID2 283A</td>
<td></td>
</tr>
<tr>
<td>Jhd2 129C</td>
<td></td>
</tr>
<tr>
<td>KAR4 129C</td>
<td></td>
</tr>
<tr>
<td>kar5 126C</td>
<td></td>
</tr>
<tr>
<td>KEL1 128B</td>
<td></td>
</tr>
<tr>
<td>kes1/osh4 200B</td>
<td></td>
</tr>
<tr>
<td>KGD1 402C</td>
<td></td>
</tr>
<tr>
<td>kie1 76A</td>
<td></td>
</tr>
<tr>
<td>Kif4A 194B</td>
<td></td>
</tr>
<tr>
<td>KIP3 50</td>
<td></td>
</tr>
<tr>
<td>KOG1 165C</td>
<td></td>
</tr>
<tr>
<td>kre6 89B</td>
<td></td>
</tr>
<tr>
<td>Kss1 161B</td>
<td></td>
</tr>
<tr>
<td>KSS1 48, 121A, 159C</td>
<td></td>
</tr>
<tr>
<td>Kxdl 145A</td>
<td></td>
</tr>
<tr>
<td>lac1 174C</td>
<td></td>
</tr>
<tr>
<td>LAC1 188B</td>
<td></td>
</tr>
<tr>
<td>LAG1 188B</td>
<td></td>
</tr>
<tr>
<td>lag1 174C</td>
<td></td>
</tr>
<tr>
<td>LCB1 188B</td>
<td></td>
</tr>
<tr>
<td>LCB4 188B</td>
<td></td>
</tr>
<tr>
<td>Ldb19 141C, 146B</td>
<td></td>
</tr>
<tr>
<td>leu3 217A</td>
<td></td>
</tr>
<tr>
<td>LOC1 265A</td>
<td></td>
</tr>
<tr>
<td>Yeast Database Genetic Index to Abstracts</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>LSM1 ... 323B</td>
<td></td>
</tr>
<tr>
<td>LSM4 ... 41</td>
<td></td>
</tr>
<tr>
<td>LST8 ... 21</td>
<td></td>
</tr>
<tr>
<td>Maf1 ... 317B</td>
<td></td>
</tr>
<tr>
<td>MAM3 ... 328A</td>
<td></td>
</tr>
<tr>
<td>mat1 ... 122B</td>
<td></td>
</tr>
<tr>
<td>MATA ... 118A</td>
<td></td>
</tr>
<tr>
<td>MATALPHA 118A</td>
<td></td>
</tr>
<tr>
<td>Mbp1 ... 6</td>
<td></td>
</tr>
<tr>
<td>MCA1 ... 392B</td>
<td></td>
</tr>
<tr>
<td>MCD1 ... 227B</td>
<td></td>
</tr>
<tr>
<td>MCD1/S SCC1 230B</td>
<td></td>
</tr>
<tr>
<td>MCK1 ... 191B</td>
<td></td>
</tr>
<tr>
<td>MCM4 ... 234C</td>
<td></td>
</tr>
<tr>
<td>MCM5 ... 244A</td>
<td></td>
</tr>
<tr>
<td>mdh1 ... 107B</td>
<td></td>
</tr>
<tr>
<td>mdd2 ... 107B</td>
<td></td>
</tr>
<tr>
<td>MDMA ... 366C</td>
<td></td>
</tr>
<tr>
<td>MDR ... 36</td>
<td></td>
</tr>
<tr>
<td>mec1 ... 229A</td>
<td></td>
</tr>
<tr>
<td>MED13 .. 36, 162C</td>
<td></td>
</tr>
<tr>
<td>mel4 ... 253A</td>
<td></td>
</tr>
<tr>
<td>MEK1 ... 119B</td>
<td></td>
</tr>
<tr>
<td>Met16 .. 202A</td>
<td></td>
</tr>
<tr>
<td>met17 .. 337A</td>
<td></td>
</tr>
<tr>
<td>MET18 .. 194B</td>
<td></td>
</tr>
<tr>
<td>Mf(ALPHA) 118A</td>
<td></td>
</tr>
<tr>
<td>MFA1 ... 118A</td>
<td></td>
</tr>
<tr>
<td>MID2 ... 177C</td>
<td></td>
</tr>
<tr>
<td>mgI ... 179B</td>
<td></td>
</tr>
<tr>
<td>MgI ... 182B</td>
<td></td>
</tr>
<tr>
<td>mtl1 ... 379A</td>
<td></td>
</tr>
<tr>
<td>MTI .. 27</td>
<td></td>
</tr>
<tr>
<td>Mkt1 ... 361A</td>
<td></td>
</tr>
<tr>
<td>mob2 .. 76A</td>
<td></td>
</tr>
<tr>
<td>Mob2 .. 76A</td>
<td></td>
</tr>
<tr>
<td>MOT .. 21</td>
<td></td>
</tr>
<tr>
<td>Mph1 .. 231C</td>
<td></td>
</tr>
<tr>
<td>MPH1 .. 279C</td>
<td></td>
</tr>
<tr>
<td>MPK1 .. 117C, 121A</td>
<td></td>
</tr>
<tr>
<td>Mrp1 .. 109A</td>
<td></td>
</tr>
<tr>
<td>Mrp3 .. 126C</td>
<td></td>
</tr>
<tr>
<td>Mrn1 .. 442A</td>
<td></td>
</tr>
<tr>
<td>Msal ... 6</td>
<td></td>
</tr>
<tr>
<td>Msal2 .. 6</td>
<td></td>
</tr>
<tr>
<td>MSB2 .. 157A</td>
<td></td>
</tr>
<tr>
<td>MSH2 .. 65, 234C</td>
<td></td>
</tr>
<tr>
<td>msh6 .. 237C</td>
<td></td>
</tr>
<tr>
<td>msI ... 362B</td>
<td></td>
</tr>
<tr>
<td>MSN2 .. 21, 103A, 105C, 206B, 213C, 293B, 294C</td>
<td></td>
</tr>
<tr>
<td>Msn2 .. 316A</td>
<td></td>
</tr>
<tr>
<td>MSN4 .. 105C, 206B</td>
<td></td>
</tr>
<tr>
<td>Msn4 .. 316A</td>
<td></td>
</tr>
<tr>
<td>mssI .. 379A</td>
<td></td>
</tr>
<tr>
<td>MSSL1 .. 22, 166A</td>
<td></td>
</tr>
<tr>
<td>MTG3 .. 137B</td>
<td></td>
</tr>
<tr>
<td>mtw1 .. 222C</td>
<td></td>
</tr>
<tr>
<td>mug20 .. 252C</td>
<td></td>
</tr>
<tr>
<td>mus81 .. 253A, 261C</td>
<td></td>
</tr>
<tr>
<td>MYO1 ... 90C</td>
<td></td>
</tr>
<tr>
<td>Myo1 ... 52</td>
<td></td>
</tr>
<tr>
<td>NBA1 ... 90C</td>
<td></td>
</tr>
<tr>
<td>ndc10 ... 222C</td>
<td></td>
</tr>
<tr>
<td>Ndc80 ... 112A, 113B, 224B</td>
<td></td>
</tr>
<tr>
<td>ndc80 ... 221B</td>
<td></td>
</tr>
<tr>
<td>ndj1 ... 114C, 251B</td>
<td></td>
</tr>
<tr>
<td>ndj80 .. 114C</td>
<td></td>
</tr>
<tr>
<td>NDT80 ... 116B</td>
<td></td>
</tr>
<tr>
<td>NEM1 ... 173B, 187A</td>
<td></td>
</tr>
<tr>
<td>NES1 .. 90C</td>
<td></td>
</tr>
<tr>
<td>Nfu1 .. 221B</td>
<td></td>
</tr>
<tr>
<td>NOT1 .. 286A</td>
<td></td>
</tr>
<tr>
<td>Npr1 .. 152B</td>
<td></td>
</tr>
<tr>
<td>Npr2 .. 84C</td>
<td></td>
</tr>
<tr>
<td>Npr3 .. 84C</td>
<td></td>
</tr>
<tr>
<td>NTE1 .. 159C</td>
<td></td>
</tr>
<tr>
<td>NUF2 .. 113B</td>
<td></td>
</tr>
<tr>
<td>num2 .. 41</td>
<td></td>
</tr>
<tr>
<td>NUP84 ... 249C</td>
<td></td>
</tr>
<tr>
<td>oei .. 168C</td>
<td></td>
</tr>
<tr>
<td>ORC1 .. 159C</td>
<td></td>
</tr>
<tr>
<td>ORC4 .. 262A</td>
<td></td>
</tr>
<tr>
<td>ORC6 .. 262A</td>
<td></td>
</tr>
<tr>
<td>PAB1 .. 344B</td>
<td></td>
</tr>
<tr>
<td>PAH1 .. 173B, 187A, 191B</td>
<td></td>
</tr>
<tr>
<td>pan1 .. 19</td>
<td></td>
</tr>
<tr>
<td>PAT1 .. 166A, 286A, 323B</td>
<td></td>
</tr>
<tr>
<td>Pat1 ... 5</td>
<td></td>
</tr>
<tr>
<td>PBP1 .. 361A</td>
<td></td>
</tr>
<tr>
<td>Pcr1 .. 256A</td>
<td></td>
</tr>
<tr>
<td>PDA1 .. 402C</td>
<td></td>
</tr>
<tr>
<td>PDB1 .. 402C</td>
<td></td>
</tr>
<tr>
<td>PDC2 .. 306C</td>
<td></td>
</tr>
<tr>
<td>PDR5 .. 407B</td>
<td></td>
</tr>
<tr>
<td>PDS1 .. 266B</td>
<td></td>
</tr>
<tr>
<td>PDS5 .. 230B</td>
<td></td>
</tr>
<tr>
<td>PEA2 .. 366C</td>
<td></td>
</tr>
<tr>
<td>pepl .. 133A</td>
<td></td>
</tr>
<tr>
<td>pep5 .. 424A</td>
<td></td>
</tr>
<tr>
<td>PEX14 .. 35</td>
<td></td>
</tr>
<tr>
<td>PEX3 .. 35</td>
<td></td>
</tr>
<tr>
<td>PFK1 .. 102C</td>
<td></td>
</tr>
<tr>
<td>PFK2 .. 102C</td>
<td></td>
</tr>
<tr>
<td>PGM1 .. 105C</td>
<td></td>
</tr>
<tr>
<td>pgm1 .. 86B</td>
<td></td>
</tr>
<tr>
<td>PGM2 .. 105C</td>
<td></td>
</tr>
<tr>
<td>pgm2 .. 86B</td>
<td></td>
</tr>
<tr>
<td>PHD1 .. 462C</td>
<td></td>
</tr>
<tr>
<td>pho1 .. 319A</td>
<td></td>
</tr>
<tr>
<td>PHO5 .. 341B</td>
<td></td>
</tr>
<tr>
<td>pho7 .. 319A</td>
<td></td>
</tr>
<tr>
<td>PHO85 .. 320B</td>
<td></td>
</tr>
<tr>
<td>pka1 .. 392B</td>
<td></td>
</tr>
<tr>
<td>PKC1 .. 177C, 197B</td>
<td></td>
</tr>
<tr>
<td>Pma1 .. 399C</td>
<td></td>
</tr>
<tr>
<td>PMA1 ... 34, 276C</td>
<td></td>
</tr>
<tr>
<td>PMU1 .. 341B</td>
<td></td>
</tr>
<tr>
<td>PMU2 .. 341B</td>
<td></td>
</tr>
<tr>
<td>pol1 .. 229A</td>
<td></td>
</tr>
<tr>
<td>POL2 .. 234C</td>
<td></td>
</tr>
<tr>
<td>POL2 .. 234C</td>
<td></td>
</tr>
<tr>
<td>POL3 .. 244A</td>
<td></td>
</tr>
<tr>
<td>POL32 .. 244A, 271A</td>
<td></td>
</tr>
<tr>
<td>PRE6 .. 328A</td>
<td></td>
</tr>
<tr>
<td>PRM3 .. 126C</td>
<td></td>
</tr>
<tr>
<td>PRP3 .. 401B</td>
<td></td>
</tr>
<tr>
<td>PRP3 .. 401B</td>
<td></td>
</tr>
<tr>
<td>PRP6 .. 401B</td>
<td></td>
</tr>
<tr>
<td>PRP8 .. 401B</td>
<td></td>
</tr>
<tr>
<td>psh1 .. 222C</td>
<td></td>
</tr>
<tr>
<td>PSH1 .. 31, 223A</td>
<td></td>
</tr>
<tr>
<td>PTR3 .. 27, 170B</td>
<td></td>
</tr>
<tr>
<td>PUFS3 .. 45, 291C, 299B, 361A</td>
<td></td>
</tr>
<tr>
<td>rad3 .. 261C</td>
<td></td>
</tr>
<tr>
<td>RAD5 .. 232A</td>
<td></td>
</tr>
<tr>
<td>RAS1 .. 29, 119B, 279C</td>
<td></td>
</tr>
<tr>
<td>RAD52 .. 29, 247A, 279C, 378C</td>
<td></td>
</tr>
<tr>
<td>Rad53 .. 36</td>
<td></td>
</tr>
<tr>
<td>Rad53 .. 41, 305B</td>
<td></td>
</tr>
<tr>
<td>RAD61 .. 227B</td>
<td></td>
</tr>
<tr>
<td>RAS2 .. 48, 159C</td>
<td></td>
</tr>
<tr>
<td>RBD2 .. 384C</td>
<td></td>
</tr>
<tr>
<td>rec12 .. 252C, 256A</td>
<td></td>
</tr>
<tr>
<td>rec25 .. 252C</td>
<td></td>
</tr>
<tr>
<td>rec27 .. 252C</td>
<td></td>
</tr>
<tr>
<td>rec8 .. 252C</td>
<td></td>
</tr>
<tr>
<td>RED1 .. 119B</td>
<td></td>
</tr>
<tr>
<td>reg1 .. 424A</td>
<td></td>
</tr>
<tr>
<td>reg2 .. 179B</td>
<td></td>
</tr>
<tr>
<td>REV3 .. 232A, 244A</td>
<td></td>
</tr>
<tr>
<td>REV7 .. 244A</td>
<td></td>
</tr>
<tr>
<td>Rfa1 .. 235A, 250A</td>
<td></td>
</tr>
<tr>
<td>Rfa1 .. 233B</td>
<td></td>
</tr>
<tr>
<td>Rfa2 .. 233B</td>
<td></td>
</tr>
<tr>
<td>Rfa2 .. 235A, 250A</td>
<td></td>
</tr>
<tr>
<td>Rfa3 .. 233B</td>
<td></td>
</tr>
<tr>
<td>Rfa3 .. 250A</td>
<td></td>
</tr>
<tr>
<td>rgt1 .. 101B</td>
<td></td>
</tr>
<tr>
<td>RGT2 .. 176B</td>
<td></td>
</tr>
<tr>
<td>rim101 ... 379A</td>
<td></td>
</tr>
<tr>
<td>RIM101 ... 159C</td>
<td></td>
</tr>
<tr>
<td>RIM101 ... 159C</td>
<td></td>
</tr>
<tr>
<td>RIM15 .. 310A</td>
<td></td>
</tr>
<tr>
<td>RIM15 .. 316A</td>
<td></td>
</tr>
<tr>
<td>RIM4 .. 129C</td>
<td></td>
</tr>
<tr>
<td>rim8 .. 379A</td>
<td></td>
</tr>
<tr>
<td>RLG1 .. 46</td>
<td></td>
</tr>
<tr>
<td>RLM1 .. 117C</td>
<td></td>
</tr>
<tr>
<td>Rod1 .. 141C</td>
<td></td>
</tr>
<tr>
<td>Rog3 .. 141C</td>
<td></td>
</tr>
<tr>
<td>rot1 .. 389B</td>
<td></td>
</tr>
<tr>
<td>ROX1 .. 197B</td>
<td></td>
</tr>
<tr>
<td>rpb7 .. 304A</td>
<td></td>
</tr>
<tr>
<td>RP3 .. 159C, 280A</td>
<td></td>
</tr>
<tr>
<td>Rpd3 .. 316A</td>
<td></td>
</tr>
<tr>
<td>RPD3 .. 280A</td>
<td></td>
</tr>
<tr>
<td>RPH1 .. 293B</td>
<td></td>
</tr>
<tr>
<td>RPL7A .. 265A</td>
<td></td>
</tr>
<tr>
<td>rpm1 .. 389B</td>
<td></td>
</tr>
<tr>
<td>RPO21 .. 302B</td>
<td></td>
</tr>
<tr>
<td>RPS6 .. 265A</td>
<td></td>
</tr>
<tr>
<td>RPS6 .. 265A</td>
<td></td>
</tr>
<tr>
<td>RPS31 .. 290B</td>
<td></td>
</tr>
<tr>
<td>rps6a .. 184A</td>
<td></td>
</tr>
<tr>
<td>rps6b .. 184A</td>
<td></td>
</tr>
<tr>
<td>rsc1 .. 424A</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>
Snc1 ... 149B
Snf1 .. 156C
Snf1 .. 179B, 281B
Snf1 .. 7, 101B, 182B, 199A
Snf1 .. 424A
Snf2 .. 205A
Snf3 .. 176B
Snf3 .. 101B
Snf8 .. 379A
Sml1 .. 145A
Sod1 .. 322A
Sog2 .. 76A
Spac19A8.02 134B
Spc24 .. 221B
Spc24 .. 113B
Spc25 .. 113B
Spc97 .. 108C
Spc98 .. 108C
Spo11 .. 252C
Spo14 .. 124A
Spo7 .. 173B, 187A
Spo7 .. 124A
Spo7 .. 124A
Spo7 .. 125B
Spo7 .. 125B
Spo8 .. 120C
Spt16 .. 31, 276C
Spt3 .. 269B
Srb10/CDK8 320B
Srb8 .. 307A
Srs2 .. 238A, 279C
Ssa1 .. 388A
Ssa1 .. 43
Ssd1 .. 286A
Ssd1 .. 1
Ssn3 .. 162B, 283A
Ssn3 .. 162B, 283A
Ssn4 .. 170B
Ssn5 .. 170B, 172A
Ste11 .. 161B
Ste12 .. 121A, 129C, 181A, 323B, 333C
Ste12 .. 48
Ste12 .. 118A
Ste2 .. 141C
Ste3 .. 118A
Ste4 .. 48, 49
Ste5 .. 48, 178A
Stpl .. 170B
Sua7 .. 302B
Suc2 .. 149B
Sul1 .. 25, 99C, 228C, 346A
Sul2 .. 346A
Sul4 .. 83B
Sup35 .. 60
Sup35 .. 147C
Sur7 .. 442A
Swe1 .. 2, 48, 95B, 406A
Swi3 .. 205A
Swi4 .. 121A
Swi4 .. 6
Swi6 .. 246C
Swi6 .. 6
Tah1 .. 100A
tao3 .. 76A
Tco89 .. 277A
Tdp1 .. 272B
tec1 .. 379A
Tec1 .. 121A, 181A
Tef1 .. 28
Tfg2 .. 302B
Tgl3 .. 2
Tgl4 .. 2
Thi10 .. 306C
Thi2 .. 306C
Thi3 .. 306C
Thi4 .. 306C
Thir .. 442A
Tif4631 344B
Tif4632 344B
Tif51A/Hyp2 197B
Tif51B/Anb1 197B
Tlc1 .. 264C
tod6 .. 160A
Tom70 .. 46, 288C
Top1 .. 65
Tori.91A, 165C, 167B, 173B, 207C
Tor1 .. 160A, 316A
Tor2 .. 169A
Tor2 .. 21
Tos4 .. 4
Tos8 .. 462C
Tpk1 .. 160A
Tpk1, PKA 5
Tpk2 .. 160A
tpk3 .. 379A
Tpk3 .. 160A
TPS1 .. 78C, 93C, 94A
Tps2 .. 424A
Trl1 .. 290B
TRP1 .. 103A
TRP1 .. 22
Trn2 .. 202A
Tsl1 .. 206B
Tub1 .. 50
Tub2 .. 50
Tyl1 .. 229A
Uba1 .. 57A
Ubc4 .. 19
Ubp3 .. 308B
Ubr2 .. 222C
Ugp1 .. 105C
Upf1 .. 220A
Ura3 .. 445A
Usa1 .. 154A
Uth1 .. 83B
Vab2 .. 145A
Vhs1 .. 101B
Vhs3 .. 443B
Vid22 .. 378C
Vph2 .. 424A
Vps1 .. 74B
Vps13 .. 124A, 149B
Vps27 .. 145A
<table>
<thead>
<tr>
<th>Gene</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whi2</td>
<td>331A</td>
</tr>
<tr>
<td>WSC1</td>
<td>177C</td>
</tr>
<tr>
<td>Xbp1</td>
<td>6</td>
</tr>
<tr>
<td>XRN1</td>
<td>46, 220A, 269B, 290B</td>
</tr>
<tr>
<td>YAK1</td>
<td>166A</td>
</tr>
<tr>
<td>Yap1</td>
<td>202A</td>
</tr>
<tr>
<td>yck1</td>
<td>101B</td>
</tr>
<tr>
<td>yck2</td>
<td>101B</td>
</tr>
<tr>
<td>YDJ1</td>
<td>53</td>
</tr>
<tr>
<td>YDR332w</td>
<td>132C</td>
</tr>
<tr>
<td>YDR336w</td>
<td>132C</td>
</tr>
<tr>
<td>YHP1</td>
<td>4</td>
</tr>
<tr>
<td>YHR177W</td>
<td>462C</td>
</tr>
<tr>
<td>YIL166C</td>
<td>346A</td>
</tr>
<tr>
<td>YKU80</td>
<td>263B, 378C</td>
</tr>
<tr>
<td>yop1</td>
<td>18</td>
</tr>
<tr>
<td>YOR019W</td>
<td>27</td>
</tr>
<tr>
<td>YOR1</td>
<td>394A</td>
</tr>
<tr>
<td>YOX1</td>
<td>4</td>
</tr>
<tr>
<td>YPC1</td>
<td>85A</td>
</tr>
<tr>
<td>ypk1</td>
<td>174C, 184A</td>
</tr>
<tr>
<td>Ypk1</td>
<td>169A</td>
</tr>
<tr>
<td>ypk2</td>
<td>184A</td>
</tr>
<tr>
<td>ypk3</td>
<td>184A</td>
</tr>
<tr>
<td>YRR1</td>
<td>374B</td>
</tr>
<tr>
<td>YSP1</td>
<td>134B</td>
</tr>
<tr>
<td>ZAP1</td>
<td>417C</td>
</tr>
<tr>
<td>zip1</td>
<td>114C</td>
</tr>
<tr>
<td>ZrSTL1</td>
<td>190A</td>
</tr>
<tr>
<td>ZrSTL2</td>
<td>190A</td>
</tr>
</tbody>
</table>
Supporting education in the field of yeast genetics.

For more info visit: thecarlsingerfoundation.org
Take control
with dynamic cell culture.

Biology is so much more than DMEM/FBS, 37 °C, 5% CO₂.
It’s easy to program automated changes to culture media, gas and temperature,
while tracking cell responses, with the flexible, intuitive CellASIC® ONIX
Microfluidic Platform. By taking control of this truly in vivo-like environment,
you’ll be able to perform dynamic, time-lapse experiments never before possible.

Watch live cells respond in real time:
www.emdmillipore.com/CellASIC
Scientific peer-review and publishing is a critical component of your research process that deserves to be handled with care, responsiveness, and speed. Trust your articles to GSA’s peer-edited sister journals. Your peers – practicing scientists – manage the review and make all decisions on manuscripts. We publish cross-journal article blocks including Genomic Selection, QTL mapping in multi-parental population, Mouse Collaborative Cross, Genetics of Sex Determination, and others.

One month from submission until first decision means timely discovery of your research. And G3 and GENETICS articles feature interactive, one-click links to FlyBase, plus Altmetric statistics, and, in mid-2014, ORCID IDs to link all your research output. Want to see your artwork on the cover? Submit an entry! Not sure if your work is appropriate for GENETICS or G3? Submit a pre-submission inquiry. Need to fast-track a paper? Let us know.

Why submit to G3? G3 provides a forum for the publication of high-quality research that generates useful genetic and genomic findings. Topics include genome maps, single gene studies, genome-wide association and QTL studies, mutant screen reports, sequence of novel species, plus datasets, research in human and medical genetics, and more. G3 believes that rapid dissemination of its published articles is the necessary foundation for analysis that leads to mechanistic insights.

- Fully open-access journal
- Rapid turnaround on submitted manuscripts
- Early online publication within 2 weeks of acceptance; final publication within 4-8 weeks
- Well-described studies with useful results
- Mutant Screen Report format for quick submissions

Because your research is important to you, it’s important to us. Don’t let your work get lost in a sea of papers! Submit to G3, increase your visibility, and support the genetics community.

www.g3journal.org

Why submit to GENETICS? To communicate significant, novel findings in genetics and genomics to a wide range of scientific investigators. GENETICS also publishes Methods, Technology and Resources; significant software advances; Toolbox reviews; Educational Primers; Commentaries, Perspectives, and more.

- Fast decisions - average 34 days from submission to first decision
- Thoughtful, thorough reviews improve the impact of your research
- Clear decisions by peer-editors
- Space to tell the whole story - no limits on page length, tables, or figures
- Early online within 2 weeks of acceptance
- Open-access option
- Highlights and press releases promote exceptional stories and discoveries

www.genetics.org

Submit your next manuscript to the GSA Journals
Join Us

THE ALLIED
GENETICS 2016
CONFERENCE

ORLANDO, FL
JULY 13-17

Bringing Genetics Together

www.genetics2016.org
Basic research with translational impact

DMM publishes research and reviews that focus on the use of model organisms to understand, diagnose and treat human disease. The journal is committed to promoting rigorous preclinical assessment of models and mechanisms to drive the development of novel and effective therapies.

Key Author Benefits

- Impact factor: 5
- Open Access
- PMC deposition
- Accepted manuscripts online within 1 week
- Indexed in Medline, ISI and Scopus

Read the latest in translational research at: dmm.biologists.org

THE COMPANY OF Biologists An OPEN ACCESS Journal
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUESDAY, JULY 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 pm – 7:00 pm</td>
<td>First Time Attendees Social</td>
<td>Meany Theater Lobby</td>
<td></td>
</tr>
<tr>
<td>7:00 pm – 7:15 pm</td>
<td>Welcome and Opening Remarks</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>7:15 pm – 8:15 pm</td>
<td>Ira Herskowitz Award Lecture</td>
<td>Olga Troyanskaya, Princeton University</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>8:15 pm – 11:00 pm</td>
<td>Opening Mixer</td>
<td>Meany Theater Lobby</td>
<td></td>
</tr>
<tr>
<td>WEDNESDAY, JULY 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 am – 10:00 am</td>
<td>Cell Cycle Transitions</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>10:30 am – 11:15 am</td>
<td>Environmental Sensing Networks</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>11:15 am – 12:00 noon</td>
<td>Lee Hartwell Lecture</td>
<td>George Church, Harvard University</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>2:00 pm – 3:30 pm</td>
<td>Temporal and Spatial Control of Chromatin</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>4:00 pm – 5:30 pm</td>
<td>Special Presentation by Jon Lorsch, Director of the National Institute of General Medical Sciences, NIH</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>Meany Theater Lobby</td>
<td>“How to Get Published” Presentation</td>
</tr>
<tr>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 1 and Exhibits</td>
<td>HUB Grand Ballroom</td>
<td></td>
</tr>
<tr>
<td>THURSDAY, JULY 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 am – 10:00 am</td>
<td>Trafficking and Cellular Architecture</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>10:30 am – 12:00 noon</td>
<td>Dissecting Complex Traits</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>1:30 pm – 3:00 pm</td>
<td>Workshops:</td>
<td>Kane Hall Room 120</td>
<td>Beyond Cerevisiae</td>
</tr>
<tr>
<td></td>
<td>- Beyond Cerevisiae</td>
<td>Kane Hall Room 220</td>
<td>Computational Tools at SGD</td>
</tr>
<tr>
<td></td>
<td>- Computational Tools at SGD</td>
<td>Kane Hall Room 210</td>
<td>Plenary and Workshop for Undergraduate Researchers</td>
</tr>
<tr>
<td>3:15 pm – 4:45 pm</td>
<td>Advocacy Presentation</td>
<td>Kane Hall Room 210</td>
<td></td>
</tr>
<tr>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>HUB Room 250</td>
<td>GSA Career Dinner</td>
</tr>
<tr>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 2 and Exhibits</td>
<td>HUB Grand Ballroom</td>
<td></td>
</tr>
<tr>
<td>FRIDAY, AUGUST 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 am – 10:00 am</td>
<td>Chromosome Dynamics</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>10:30 am – 11:15 am</td>
<td>Aging</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>11:15 am – 12:00 noon</td>
<td>Lifetime Achievement Award</td>
<td>Jeremy Thorner, University of California, Berkeley</td>
<td>Meany Theater</td>
</tr>
<tr>
<td>2:00 pm – 3:30 pm</td>
<td>Next Generation Genetica</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>4:00 pm – 5:30 pm</td>
<td>Epigenetics and Post-Transcriptional Regulation</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>6:00 pm – 7:30 pm</td>
<td>Dinner</td>
<td>HUB Den</td>
<td></td>
</tr>
<tr>
<td>7:30 pm – 11:00 pm</td>
<td>Poster Session 3 and Exhibits</td>
<td>HUB Grand Ballroom</td>
<td></td>
</tr>
<tr>
<td>SATURDAY, AUGUST 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30 am – 10:00 am</td>
<td>Spatial Relationships</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>10:30 am – 12:00 noon</td>
<td>Chromosome Rearrangements and Polyploidy</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>2:00 pm – 3:30 pm</td>
<td>New Technologies</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>4:00 pm – 5:30 pm</td>
<td>Yeast and Human Disease</td>
<td>Meany Theater</td>
<td></td>
</tr>
<tr>
<td>5:30 pm – 5:45 pm</td>
<td>GSA Awards:</td>
<td>HUB Grand Ballroom</td>
<td>Presentation of Edward Novitski Prize to Charlie Boone</td>
</tr>
<tr>
<td></td>
<td>- Presentation of Edward Novitski Prize to Charlie Boone</td>
<td>HUB Grand Ballroom</td>
<td>Presentation of Elizabeth W. Jones Award for Excellence in Education to Malcolm Campbell</td>
</tr>
<tr>
<td>6:00 pm – 12:00 am</td>
<td>Dinner</td>
<td>HUB Den</td>
<td>Arquette - Winge-Lindgren Address, Anita Hopper, Ohio State University Conference Party</td>
</tr>
<tr>
<td>SUNDAY, AUGUST 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 am – 11:00 am</td>
<td>Genomics and Proteomics</td>
<td>Meany Theater</td>
<td>Chair: Corey Nislow</td>
</tr>
</tbody>
</table>